《2019高考物理三輪沖刺 大題提分 大題精做12 帶電粒子在復(fù)合場(chǎng)中運(yùn)動(dòng)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019高考物理三輪沖刺 大題提分 大題精做12 帶電粒子在復(fù)合場(chǎng)中運(yùn)動(dòng)(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、大題精做十二 帶電粒子在復(fù)合場(chǎng)中運(yùn)動(dòng)
1.【龍巖質(zhì)量檢測(cè)】如圖所示,在xOy坐標(biāo)平面內(nèi),x<0的區(qū)域存在沿y軸負(fù)方向的勻強(qiáng)電場(chǎng),在第四象限內(nèi)存在垂直紙面向里的勻強(qiáng)磁場(chǎng)。一質(zhì)量為m,帶電量為q粒子在電場(chǎng)中的P點(diǎn)以初速度v0沿x軸正方向射出,恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O進(jìn)入勻強(qiáng)磁場(chǎng)。已知P點(diǎn)坐標(biāo)為(-L,),磁場(chǎng)的磁感應(yīng)強(qiáng)度,不計(jì)粒子重力。求:
(1)勻強(qiáng)電場(chǎng)的場(chǎng)強(qiáng)大??;
(2)粒子在O點(diǎn)時(shí)速度的大小和方向;
(3)粒子從磁場(chǎng)射出時(shí)的橫坐標(biāo)x。
【解析】(1) 粒子在電場(chǎng)中做類平拋運(yùn)動(dòng),水平方向:L=v0t
豎直方向:,
解得:,。
(2) 粒子經(jīng)過(guò)O點(diǎn)時(shí)的速度:
設(shè)速度方向與x軸正
2、方向間夾角為θ,則
所以θ=60°
即粒子在O點(diǎn)的速度大小為2v0,方向與x正向成60°角斜向下。
(3) 粒子在磁場(chǎng)中做勻速圓周運(yùn)動(dòng),洛倫茲力提供向心力,由牛頓第二定律得:
解得:r=2L
粒子從磁場(chǎng)射出時(shí)的橫坐標(biāo):x=2rsin θ=。
2.【河南九師聯(lián)盟質(zhì)檢】如圖所示,豎直平面內(nèi)有一直角坐標(biāo)系xOy,x軸沿水平方向。第二、三象限有垂直于坐標(biāo)平面向里的勻強(qiáng)磁場(chǎng),與x軸成θ=30°角的絕緣細(xì)桿固定在二、三象限;第四象限同時(shí)存在著豎直向上的勻強(qiáng)電場(chǎng)和垂直于坐標(biāo)平面向里磁感應(yīng)強(qiáng)度大小為B的勻強(qiáng)磁場(chǎng),一質(zhì)量為m,電荷量為q帶電小球a穿在細(xì)桿上沿細(xì)桿勻速下滑,在N點(diǎn)脫離細(xì)桿恰能沿圓周
3、軌道運(yùn)動(dòng)到x軸上的A點(diǎn),且速度方向垂直于x軸。已知A點(diǎn)到坐標(biāo)原點(diǎn)O的距離為,小球a與絕緣細(xì)桿的動(dòng)摩擦因數(shù),,重力加速度為g,空氣阻力忽略不計(jì)。求:
(1)帶電小球的電性及電場(chǎng)強(qiáng)度的大小E;
(2)第二、三象限里的磁場(chǎng)的磁感應(yīng)強(qiáng)度大小B1;
(3)當(dāng)帶電小球a剛離開N點(diǎn)時(shí),從y軸正半軸距原點(diǎn)O為的P點(diǎn)(圖中未畫出)以某一初速度水平向右平拋一個(gè)不帶電的絕緣小球b,b球剛好運(yùn)動(dòng)到x軸時(shí)與向上運(yùn)動(dòng)的a球相碰,則b球的初速度為多大?
【解析】(1)由帶電小球a在第四象限內(nèi)做勻速圓周運(yùn)動(dòng)可得,帶電小球a帶正電,且mg=qE
解得:E=mgq
(2)帶電小球a從N點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的過(guò)程中,設(shè)運(yùn)動(dòng)半徑
4、為R,有:
qvB=mv2R
由幾何關(guān)系有R+Rsinθ=32l
聯(lián)立解得v=qlBm=5πg(shù)l6
帶電小球a在桿上勻速運(yùn)動(dòng)時(shí),由平衡條件有
mgsinθ=μ(qvB1-mgcosθ)
解得B1=7mqg10πl(wèi)
(3)帶電小球a在第四象限內(nèi)做勻速圓周運(yùn)動(dòng)的周期T=2πRv=24πl(wèi)5g
帶電小球a第一次在第一象限豎直上下運(yùn)動(dòng)的總時(shí)間為t0=2vg=10πl(wèi)3
絕緣小球b平拋運(yùn)動(dòng)至x軸上的時(shí)間為t=2hg=210πl(wèi)3g
兩球相碰有t=T3+nt0+T2
聯(lián)立解得n=1
設(shè)絕緣小球b平拋的初速度為v0,則72l=v0t
解得v0=147gl160π。
5、
1.【日照期末】如圖所示,真空中有以O(shè)1為圓心、r半徑的圓形勻強(qiáng)磁場(chǎng)區(qū)域,坐標(biāo)原點(diǎn)O為圓形磁場(chǎng)邊界上的一點(diǎn)。磁場(chǎng)的磁感應(yīng)強(qiáng)度大小為B,方向垂直于紙面向外。x=r的虛線右側(cè)足夠大的范圍內(nèi)有方向豎直向下、大小為E的勻強(qiáng)電場(chǎng)。從O點(diǎn)在紙面內(nèi)向各個(gè)方向發(fā)射速率相同的質(zhì)子,速度方向與x軸正方向成120°角的質(zhì)子,經(jīng)磁場(chǎng)偏轉(zhuǎn)后又垂直射入電場(chǎng),到達(dá)x軸上的P點(diǎn)(圖中未畫出)。已知質(zhì)子的電荷量為e、質(zhì)量為m,質(zhì)子重力可忽略。
(1)求質(zhì)子射入磁場(chǎng)時(shí)的速度大??;
(2)求質(zhì)子從坐標(biāo)原點(diǎn)O到x軸上的P點(diǎn)所需的時(shí)間;
(3)若質(zhì)子沿y釉正方向射入磁場(chǎng),在離開磁場(chǎng)前的某一時(shí)刻,磁場(chǎng)方向不變、大小突然變?yōu)锽1,
6、此后質(zhì)子恰好被束縛在該圓形磁場(chǎng)中,則B1的最小值為多少?
【解析】(1) 設(shè)質(zhì)子射磁場(chǎng)時(shí)的速度為v.質(zhì)子射入磁場(chǎng)后做勻速圓周運(yùn)動(dòng),質(zhì)子的軌跡如圖所示。由幾何關(guān)系知,質(zhì)子在磁場(chǎng)中的偏轉(zhuǎn)半徑為R=r
由牛頓第二定律:evB=mv2R
解得:v=eBrm;
(2)質(zhì)子在磁場(chǎng)中運(yùn)動(dòng)的周期T=2πmqB
質(zhì)子在磁場(chǎng)中的運(yùn)動(dòng)軌跡所對(duì)應(yīng)的圓心角為1200,運(yùn)動(dòng)時(shí)間為t1=T3=2πm3eB
質(zhì)子離開磁場(chǎng)做勻速直線運(yùn)動(dòng),勻速運(yùn)動(dòng)位移為:s=r(1-sin600)
勻速運(yùn)動(dòng)的時(shí)間為:t2=sv=2-32eBm
質(zhì)子垂直射入電場(chǎng)做類平拋運(yùn)動(dòng),設(shè)在電場(chǎng)中的運(yùn)動(dòng)時(shí)間為t3
豎直位移為y=r(1+co
7、s600)
根據(jù)勻變速直線運(yùn)動(dòng)的規(guī)律y=12at32,其中a=eEm
解得:t3=3mreE
質(zhì)子從O點(diǎn)到達(dá)x軸的時(shí)間t=t1+t2+t3=2πm3eB+(2-3)m2eB+3mreE;
(3)若粒子運(yùn)動(dòng)軌跡的圓心為O3,如圖所示。當(dāng)質(zhì)子運(yùn)動(dòng)到軌跡與O1O3連線交點(diǎn)處時(shí),僅改變磁場(chǎng)大小,粒子運(yùn)動(dòng)的半徑最大,即B1對(duì)應(yīng)最小。
由幾何關(guān)系得,最大半徑Rmax=2-22r
由evB1=mv2Rmax
解得:B1=22-2B。
2.【華中師大附中期末】坐標(biāo)原點(diǎn)O處有一點(diǎn)狀的放射源,它向xOy平面內(nèi)的x軸上方各個(gè)方向發(fā)射帶正電的同種粒子,速度大小都是v0,在0
8、軸正方向的勻強(qiáng)電場(chǎng),場(chǎng)強(qiáng)大小為,其中q與m分別為該種粒子的電量和質(zhì)量;在d
9、=32mv02
化簡(jiǎn)可得:v=2v0
(2)由題意可知,沿著正x軸水平向右發(fā)射的粒子,先在電場(chǎng)中做類平拋運(yùn)動(dòng),進(jìn)入磁場(chǎng)后做勻速圓周運(yùn)動(dòng),且剛好與移動(dòng)ab板相切,設(shè)進(jìn)入磁場(chǎng)時(shí)的速度方向與正x軸方向的夾角為θ,做圓周運(yùn)動(dòng)的軌道半徑為R,則:cosθ=v0v=v02v0=12,θ=60°
由幾何關(guān)系可知:R·cos60°+R=2d
可得:R=43d
又qvB=mv2R
得:R=mvqB=2mv0qB
則B=3mv02qb
(3)根據(jù)對(duì)稱性,沿著負(fù)x軸水平向左發(fā)射的粒子,先在電場(chǎng)中做類平拋運(yùn)動(dòng),進(jìn)入磁場(chǎng)后做勻速圓周運(yùn)動(dòng),且剛好與移動(dòng)Δy之后的ab板相切,則
2d-Δy+R·cos60
10、°=R
B1=1T,B2=3T,=3s,t2=4s
解得:Δy=43d
3.【蘇州調(diào)研】實(shí)驗(yàn)中經(jīng)常利用電磁場(chǎng)來(lái)改變帶電粒子運(yùn)動(dòng)的軌跡。如圖所示,氕()、氘()、氚()三種粒子同時(shí)沿直線在紙面內(nèi)通過(guò)電場(chǎng)強(qiáng)度為E、磁感應(yīng)強(qiáng)度為B的復(fù)合場(chǎng)區(qū)域。進(jìn)入時(shí)氕與氘、氘與氚的間距均為d,射出復(fù)合場(chǎng)后進(jìn)入y軸與MN之間(其夾角為θ)垂直于紙面向外的勻強(qiáng)磁場(chǎng)區(qū)域Ⅰ,然后均垂直于邊界MN射出。虛線MN與PQ間為真空區(qū)域Ⅱ且PQ與MN平行。已知質(zhì)子比荷為,不計(jì)重力。
(1)求粒子做直線運(yùn)動(dòng)時(shí)的速度大小v;
(2)求區(qū)域Ⅰ內(nèi)磁場(chǎng)的磁感應(yīng)強(qiáng)度B1;
(3)若虛線PQ右側(cè)還存在一垂直于紙面的勻強(qiáng)磁場(chǎng)區(qū)域Ⅲ,經(jīng)該
11、磁場(chǎng)作用后三種粒子均能匯聚于MN上的一點(diǎn),求該磁場(chǎng)的最小面積S和同時(shí)進(jìn)入復(fù)合場(chǎng)的氕、氚運(yùn)動(dòng)到匯聚點(diǎn)的時(shí)間差Δt。
【解析】(1)由電場(chǎng)力與洛倫茲力平衡,Bqv=Eq
解得v=E/B。
(2)由洛倫茲力提供向心力,B1vq=mv2r
由幾何關(guān)系得r=d
解得B1=mEqdB。
(3)分析可得氚粒子圓周運(yùn)動(dòng)直徑為3r
磁場(chǎng)最小面積S=12π3r22-r22
解得S=πd2
由題意得B2=2B1
由T=2πrv得T=2πmqB
由軌跡可知Δt1=(3T1-T1) θ2π,其中T1=2πmqB1
Δt2=12(3T2-T2),其中T2=2πmqB2
解得Δt=Δt1+Δt2=
12、(π+2θ)BdE。
4.【江蘇三校聯(lián)合模擬】如圖所示,在豎直虛線PQ左側(cè)、水平虛線MN下方有范圍足夠大的豎直向上的勻強(qiáng)電場(chǎng)和水平向里的勻強(qiáng)磁場(chǎng),電場(chǎng)的電場(chǎng)強(qiáng)度大小為E,磁場(chǎng)的磁感應(yīng)強(qiáng)度B未知。在距離MN為h的O點(diǎn)將帶電小球以的初速度向右水平拋出,小球在MN下方的運(yùn)動(dòng)做勻速圓周運(yùn)動(dòng),已知重力加速度為g。
(1)求帶電小球的比荷,并指出小球帶電性質(zhì);
(2)若小球從O點(diǎn)拋出后最后剛好到達(dá)PQ上與O點(diǎn)等高的O1點(diǎn),求OO1間最小距離s及對(duì)應(yīng)磁場(chǎng)的磁感強(qiáng)度的值B0;
(3)已知磁場(chǎng)磁感應(yīng)強(qiáng)度為B1,若撤去電場(chǎng),小球從O點(diǎn)拋出后,在磁場(chǎng)中運(yùn)動(dòng)過(guò)程距離MN的最大距離為d (該點(diǎn)在PQ左側(cè)),
13、求小球運(yùn)動(dòng)經(jīng)過(guò)此點(diǎn)時(shí)加速度a。
【解析】(1)因?yàn)樾∏蛟贛N下方的運(yùn)動(dòng)是勻速圓周運(yùn)動(dòng),所以電場(chǎng)力等于重力,電場(chǎng)力方向向上,所以帶正電。因?yàn)閙g=qE所以qm=gE
(2)小球從O點(diǎn)拋出做類平拋運(yùn)動(dòng),如圖所示:
根據(jù)平拋運(yùn)動(dòng)可得:x=v0t
h=12gt2,vy=2gh
v=v02+vy2=2gh
tanθ=vyv0
解得θ=45o
所以s=2x-2R
s最小時(shí)R最大,磁場(chǎng)的磁感強(qiáng)度有最小值B0
所以s=2x-2R=2R
小球在MN下方的運(yùn)動(dòng)是勻速圓周運(yùn)動(dòng),洛倫茲力提供向心力:qvB=mv2R
R=mvqB
所以B0=(2+1)E2gh
s=4(2-2)h
(3)若
14、撤去電場(chǎng),小球從O點(diǎn)拋出后,在磁場(chǎng)中運(yùn)動(dòng)過(guò)程距離MN的最大距離為d
根據(jù)動(dòng)能定理列式得:mg(h+d)=12mv12-12mv02
又qv1B1-mg=ma
所以a=gB12g(2h+d)E-g
5.【青島二中期末】如圖所示,一小滑塊帶正電,質(zhì)量為m,從P點(diǎn)以初速度v0水平拋出,恰好從上端口a點(diǎn)以速度v0豎直向下進(jìn)入圓弧金屬管形軌道ab,然后從下端口b點(diǎn)滑出,并滑上水平傳送帶。P點(diǎn)到a點(diǎn)的豎直距離為h,金屬管形軌道ab內(nèi)壁光滑,半徑為R,管道內(nèi)徑很小,但略大于小滑塊的尺寸。b點(diǎn)上方左側(cè)整個(gè)區(qū)域(不包括b點(diǎn)所在的豎直線)存在水平向外的的勻強(qiáng)磁場(chǎng)和豎直向上的勻強(qiáng)電場(chǎng),磁感應(yīng)強(qiáng)度為B,電
15、場(chǎng)強(qiáng)度為E。當(dāng)傳送帶靜止時(shí),小滑塊恰好運(yùn)動(dòng)到傳送帶右端點(diǎn)c點(diǎn)停下。已知重力加速度為g。
(1)求小滑塊的初速度v0。
(2)求小滑塊剛要滑出b端口時(shí),對(duì)圓軌道的壓力大小。
(3)若傳送帶勻速轉(zhuǎn)動(dòng),試討論滑塊到達(dá)c點(diǎn)時(shí)的動(dòng)能Ek與傳送帶速率v的關(guān)系。
【解析】(1)小滑塊從p到a做勻速圓周運(yùn)動(dòng),則:
qE=mg
qv0B=mv02h
解得v0=ghBE。
(2)小滑塊進(jìn)入金屬管形軌道將失去電荷,所以從a到b的過(guò)程中,不受電場(chǎng)力和洛倫茲力作用,機(jī)械能守恒,則:12mv02+mgR=12mvb2
在b點(diǎn):FNb-mg=mvb2R
解得FNb=3mg+mg2h2B2RE2。
(3)若傳送帶逆時(shí)針轉(zhuǎn)動(dòng),滑塊的受力與運(yùn)動(dòng)情況與傳送帶靜止不動(dòng)時(shí)相同,故滑塊到達(dá)c點(diǎn)時(shí)的動(dòng)能為零,與傳送帶的速度無(wú)關(guān)。
若傳送帶順時(shí)針轉(zhuǎn)動(dòng),設(shè)恰好使物體一直加速時(shí)傳送帶速度大小為vc,則
fL=12mvc2-12mvb2
傳送帶靜止時(shí)有:-fL=0-12mvb2
綜合(2)聯(lián)立方程解得:vc=4gR+2g2h2B2E2
所以傳送帶順時(shí)針轉(zhuǎn)動(dòng)時(shí),滑到c點(diǎn)的動(dòng)能與傳送帶速率v的關(guān)系是:
若0