2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第2節(jié) 兩條直線的位置關(guān)系教學(xué)案 理(含解析)新人教A版

上傳人:彩*** 文檔編號(hào):104742474 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):6 大?。?.46MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第2節(jié) 兩條直線的位置關(guān)系教學(xué)案 理(含解析)新人教A版_第1頁(yè)
第1頁(yè) / 共6頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第2節(jié) 兩條直線的位置關(guān)系教學(xué)案 理(含解析)新人教A版_第2頁(yè)
第2頁(yè) / 共6頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第2節(jié) 兩條直線的位置關(guān)系教學(xué)案 理(含解析)新人教A版_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第2節(jié) 兩條直線的位置關(guān)系教學(xué)案 理(含解析)新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第2節(jié) 兩條直線的位置關(guān)系教學(xué)案 理(含解析)新人教A版(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第二節(jié) 兩條直線的位置關(guān)系 [考綱傳真] 1.能根據(jù)兩條直線的斜率判斷這兩條直線平行或垂直.2.能用解方程組的方法求兩條相交直線的交點(diǎn)坐標(biāo).3.掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩平行直線間的距離. 1.兩條直線平行與垂直的判定 (1)兩條直線平行 ①對(duì)于兩條不重合的直線l1,l2,若其斜率分別為k1,k2,則有l(wèi)1∥l2?k1=k2. ②當(dāng)直線l1,l2不重合且斜率都不存在時(shí),l1∥l2. (2)兩條直線垂直 ①如果兩條直線l1,l2的斜率存在,設(shè)為k1,k2,則有l(wèi)1⊥l2?k1·k2=-1. ②當(dāng)其中一條直線的斜率不存在,而另一條直線的斜率為0時(shí),l1⊥l

2、2. 2.兩條直線的交點(diǎn)的求法 直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2為常數(shù)),則l1與l2的交點(diǎn)坐標(biāo)就是方程組的解. 3.三種距離公式 (1)平面上的兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式|P1P2|=. 特別地,原點(diǎn)O(0,0)與任一點(diǎn)P(x,y)的距離|OP|=. (2)點(diǎn)P(x0,y0)到直線l:Ax+By+C=0的距離d=. (3)兩條平行線Ax+By+C1=0與Ax+By+C2=0間的距離為d=. [常用結(jié)論] 1.與直線Ax+By+C=0(A2+B2≠0)垂直或平行的直線系方程可設(shè)為

3、: (1)垂直:Bx-Ay+m=0; (2)平行:Ax+By+n=0. 2.與對(duì)稱(chēng)問(wèn)題相關(guān)的兩個(gè)結(jié)論 (1)點(diǎn)P(x0,y0)關(guān)于點(diǎn)A(a,b)的對(duì)稱(chēng)點(diǎn)為P′(2a-x0,2b-y0). (2)設(shè)點(diǎn)P(x0,y0)關(guān)于直線y=kx+b的對(duì)稱(chēng)點(diǎn)為P′(x′,y′),則有可求出x′,y′. [基礎(chǔ)自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)當(dāng)直線l1和l2斜率都存在時(shí),一定有k1=k2?l1∥l2.(  ) (2)如果兩條直線l1與l2垂直,則它們的斜率之積一定等于-1.(  ) (3)點(diǎn)P(x0,y0)到直線y=kx+b的距離為.( 

4、 ) (4)已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2為常數(shù)),若直線l1⊥l2,則A1A2+B1B2=0.(  ) [答案] (1)× (2)× (3)× (4)√ 2.(教材改編)直線l過(guò)點(diǎn)(-1,2)且與直線2x-3y+4=0垂直,則直線l的方程是(  ) A.3x+2y-1=0 B.3x+2y+7=0 C.2x-3y+5=0 D.2x-3y+8=0 A [設(shè)l的方程為3x+2y+m=0, 又直線l過(guò)點(diǎn)(-1,2),則 -3+4+m=0,∴m=-1. ∴l(xiāng)的方程為3x+2y-1=0,故選A.] 3.(

5、教材改編)已知點(diǎn)(a,2)(a>0)到直線l:x-y+3=0的距離為1,則a等于(  ) A.   B.2- C.-1 D.+1 C [由題意得=1,即|a+1|=, 又a>0,∴a=-1.] 4.(教材改編)過(guò)兩直線l1:x-3y+4=0和l2:2x+y+5=0的交點(diǎn)和原點(diǎn)的直線方程為_(kāi)_______. 3x+19y=0 [由得 故過(guò)點(diǎn)(0,0)和的直線方程為3x+19y=0.] 5.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是________. 2 [由兩直線平行可知=,即m=8. ∴兩直線方程分別為3x+4y-3=0和3x+4y+7

6、=0, 則它們之間的距離d==2.] 兩條直線的位置關(guān)系 1.設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的(  ) A.充分不必要條件    B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 A [當(dāng)a=1時(shí),顯然l1∥l2, 若l1∥l2,則a(a+1)-2×1=0, 所以a=1或a=-2. 所以a=1是直線l1與直線l2平行的充分不必要條件.] 2.若直線l1:(a-1)x+y-1=0和直線l2:3x+ay+2=0垂直,則實(shí)數(shù)a的值為(  ) A. B. C. D. D [由已

7、知得3(a-1)+a=0,解得a=.] 3.已知三條直線l1:2x-3y+1=0,l2:4x+3y+5=0,l3:mx-y-1=0不能構(gòu)成三角形,則實(shí)數(shù)m的取值集合為(  ) A. B. C. D. D [∵三條直線不能?chē)梢粋€(gè)三角形, ∴①當(dāng)l1∥l3時(shí),m=; ②當(dāng)l2∥l3時(shí),m=-; ③當(dāng)l1,l2,l3交于一點(diǎn)時(shí),也不能?chē)梢粋€(gè)三角形, 由得交點(diǎn)為,代入mx-y-1=0,得m=-.故選D.] [規(guī)律方法] 1.討論兩直線的位置關(guān)系時(shí)應(yīng)考慮直線的斜率是否存在. 2.“直線A1x+B1y+C1=0,A2x+B2y+C2=0平行”的充要條件是“A1B2=A2B1

8、且A1C2≠A2C1”,“兩直線垂直”的充要條件是“A1A2+B1B2=0”. 兩條直線的交點(diǎn)與距離問(wèn)題 【例1】  (1)若點(diǎn)P是曲線y=x2-ln x上任意一點(diǎn),則點(diǎn)P到直線y=x-2的最小距離為(  ) A. B.1 C. D.2 (2)直線l過(guò)點(diǎn)P(-1,2)且到點(diǎn)A(2,3)和點(diǎn)B(-4,5)的距離相等,則直線l的方程為_(kāi)_______. (1)C (2)x+3y-5=0或x=-1 [(1)因?yàn)辄c(diǎn)P是曲線y=x2-ln x上任意一點(diǎn),所以當(dāng)點(diǎn)P處的切線和直線y=x-2平行時(shí),點(diǎn)P到直線y=x-2的距離最?。?yàn)橹本€y=x-2的斜率等于1,曲線y=x2-l

9、n x的導(dǎo)數(shù)y′=2x-,令y′=1,可得x=1或x=-(舍去),所以在曲線y=x2-ln x上與直線y=x-2平行的切線經(jīng)過(guò)的切點(diǎn)坐標(biāo)為(1,1),所以點(diǎn)P到直線y=x-2的最小距離為,故選C. (2)法一:當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y-2=k(x+1),即kx-y+k+2=0. 由題意知=, 即|3k-1|=|-3k-3|,∴k=-, ∴直線l的方程為y-2=-(x+1),即x+3y-5=0. 當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=-1,也符合題意. 法二:當(dāng)AB∥l時(shí),有k=kAB=-,直線l的方程為 y-2=-(x+1),即x+3y-5=0. 當(dāng)l過(guò)AB

10、中點(diǎn)時(shí),AB的中點(diǎn)為(-1,4), ∴直線l的方程為x=-1. 故所求直線l的方程為x+3y-5=0或x=-1.] [規(guī)律方法] 1.求過(guò)兩直線交點(diǎn)的直線方程,先解方程組求出兩直線的交點(diǎn)坐標(biāo),再結(jié)合其他條件寫(xiě)出直線方程. 2.處理距離問(wèn)題的兩大策略 (1)點(diǎn)到直線的距離問(wèn)題可直接代入點(diǎn)到直線的距離公式去求. (2)動(dòng)點(diǎn)到兩定點(diǎn)距離相等,一般不直接利用兩點(diǎn)間距離公式處理,而是轉(zhuǎn)化為動(dòng)點(diǎn)在以?xún)啥c(diǎn)為端點(diǎn)的線段的垂直平分線上,從而簡(jiǎn)化計(jì)算. (1)經(jīng)過(guò)兩條直線l1:x+y-4=0和l2:x-y+2=0的交點(diǎn),且與直線2x-y-1=0垂直的直線方程為_(kāi)_______. (2)若動(dòng)點(diǎn)A

11、,B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動(dòng),則AB的中點(diǎn)M到原點(diǎn)的距離的最小值為(  ) A.3 B.2 C.3 D.4 (1)x+2y-7=0 (2)A [(1)由得 ∴l(xiāng)1與l2的交點(diǎn)坐標(biāo)為(1,3). 設(shè)與直線2x-y-1=0垂直的直線方程為x+2y+c=0, 則1+2×3+c=0,∴c=-7. ∴所求直線方程為x+2y-7=0. (2)依題意知AB的中點(diǎn)M的集合為與直線l1:x+y-7=0和l2:x+y-5=0距離都相等的直線,則M到原點(diǎn)的距離的最小值為原點(diǎn)到該直線的距離.設(shè)點(diǎn)M所在直線的方程為l:x+y+m=0,根據(jù)平行線間的距離公式得=?

12、|m+7|=|m+5|?m=-6,即l:x+y-6=0.根據(jù)點(diǎn)到直線的距離公式,得M到原點(diǎn)的距離的最小值為=3.] 對(duì)稱(chēng)問(wèn)題 【例2】 已知直線l:2x-3y+1=0,點(diǎn)A(-1,-2).求: (1)點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo); (2)直線m:3x-2y-6=0關(guān)于直線l的對(duì)稱(chēng)直線m′的方程; (3)直線l關(guān)于點(diǎn)A對(duì)稱(chēng)的直線l′的方程. [解] (1)設(shè)A′(x,y), 則解得即A′. (2)在直線m上取一點(diǎn),如M(2,0),則M(2,0)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)必在m′上. 設(shè)對(duì)稱(chēng)點(diǎn)為M′(a,b),則 解得即M′. 設(shè)m與l的交點(diǎn)為N,則由得N(4,3).

13、又m′經(jīng)過(guò)點(diǎn)N(4,3), ∴由兩點(diǎn)式得直線m′的方程為9x-46y+102=0. (3)法一:在l:2x-3y+1=0上任取兩點(diǎn),如P(1,1),N(4,3),則P,N關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)P′,N′均在直線l′上. 易知P′(-3,-5),N′(-6,-7),由兩點(diǎn)式可得l′的方程為2x-3y-9=0. 法二:設(shè)Q(x,y)為l′上任意一點(diǎn), 則Q(x,y)關(guān)于點(diǎn)A(-1,-2)的對(duì)稱(chēng)點(diǎn)為Q′(-2-x,-4-y), ∵Q′在直線l上,∴2(-2-x)-3(-4-y)+1=0, 即2x-3y-9=0. [規(guī)律方法] 常見(jiàn)對(duì)稱(chēng)問(wèn)題的求解方法 (1)中心對(duì)稱(chēng) ①點(diǎn)P(x,y)關(guān)于

14、Q(a,b)的對(duì)稱(chēng)點(diǎn)P′(x′,y′)滿(mǎn)足 ②直線關(guān)于點(diǎn)的對(duì)稱(chēng)可轉(zhuǎn)化為點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)問(wèn)題來(lái)解決. (2)軸對(duì)稱(chēng) ①點(diǎn)A(a,b)關(guān)于直線Ax+By+C=0(B≠0)的對(duì)稱(chēng)點(diǎn)A′(m,n),則有 ②直線關(guān)于直線的對(duì)稱(chēng)可轉(zhuǎn)化為點(diǎn)關(guān)于直線的對(duì)稱(chēng)問(wèn)題來(lái)解決. (1)已知直線y=2x是△ABC中角C的平分線所在的直線,若點(diǎn)A,B的坐標(biāo)分別是(-4,2),(3,1),則點(diǎn)C的坐標(biāo)為(  ) A.(-2,4) B.(-2,-4) C.(2,4) D.(2,-4) (2)已知入射光線經(jīng)過(guò)點(diǎn)M(-3,4),被直線l:x-y+3=0反射,反射光線經(jīng)過(guò)點(diǎn)N(2,6),則反射光線所在直線的方程為_(kāi)_______. (1)C (2)6x-y-6=0 [(1)設(shè)A(-4,2)關(guān)于直線y=2x的對(duì)稱(chēng)點(diǎn)為(x,y),則 解得∴BC所在直線方程為y-1=(x-3),即3x+y-10=0.聯(lián)立解得則C(2,4). (2)設(shè)點(diǎn)M(-3,4)關(guān)于直線l:x-y+3=0的對(duì)稱(chēng)點(diǎn)為M′(a,b),則反射光線所在直線過(guò)點(diǎn)M′, 所以解得a=1,b=0.即M ′(1,0). 又反射光線經(jīng)過(guò)點(diǎn)N(2,6), 所以所求直線的方程為=, 即6x-y-6=0.] - 6 -

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!