2022年高三數(shù)學(xué)大一輪復(fù)習 9.4直線與圓、圓與圓的位置關(guān)系教案 理 新人教A版
《2022年高三數(shù)學(xué)大一輪復(fù)習 9.4直線與圓、圓與圓的位置關(guān)系教案 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)大一輪復(fù)習 9.4直線與圓、圓與圓的位置關(guān)系教案 理 新人教A版(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)大一輪復(fù)習 9.4直線與圓、圓與圓的位置關(guān)系教案 理 新人教A版 xx高考會這樣考 1.考查直線與圓的相交、相切問題,判斷直線與圓、圓與圓的位置關(guān)系;2.計算弦長、面積,考查與圓有關(guān)的最值;根據(jù)條件求圓的方程. 復(fù)習備考要這樣做 1.會用代數(shù)法或幾何法判定點、直線與圓的位置關(guān)系;2.掌握圓的幾何性質(zhì),通過數(shù)形結(jié)合法解決圓的切線、直線被圓截得的弦長等直線與圓的綜合問題,體會用代數(shù)法處理幾何問題的思想. 1. 直線與圓的位置關(guān)系 設(shè)直線l:Ax+By+C=0 (A2+B2≠0), 圓:(x-a)2+(y-b)2=r2 (r>0), d為圓心(a,b)到直線l
2、的距離,聯(lián)立直線和圓的方程,消元后得到的一元二次方程的判別式為Δ.
幾何法
代數(shù)法
相交
d 3、r1-r2|(r1≠r2)
一組實數(shù)解
內(nèi)含
0≤d<|r1-r2|(r1≠r2)
無解
[難點正本 疑點清源]
1. 直線與圓的位置關(guān)系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方法的結(jié)合,“代數(shù)法”與“幾何法”是從不同的方面和思路來判斷的.
2. 計算直線被圓截得的弦長的常用方法
(1)幾何方法
運用弦心距(即圓心到直線的距離)、弦長的一半及半徑構(gòu)成直角三角形計算.
(2)代數(shù)方法
運用根與系數(shù)關(guān)系及弦長公式
|AB|=|xA-xB|
=.
1. (xx·重慶)過原點的直線與圓x2+y2-2x-4y+4=0相交所得弦的長為2,則該直線的方程為________.
答案 2x- 4、y=0
解析 圓的方程化為標準形式為(x-1)2+(y-2)2=1,又相交所得弦長為2,故相交弦為圓的直徑,由此得直線過圓心(1,2),故所求直線方程為2x-y=0.
2. 若圓x2+y2=1與直線y=kx+2沒有公共點,則實數(shù)k的取值范圍為__________.
答案 (-,)
解析 由圓與直線沒有公共點,可知圓的圓心到直線的距離大于半徑,也就是>1,解得- 5、點到直線的距離為1,則需圓心(0,0)到直線的距離d滿足0≤d<1.
∵d==,∴0≤|c|<13,即c∈(-13,13).
4. 從圓x2-2x+y2-2y+1=0外一點P(3,2)向這個圓作兩條切線,則兩切線夾角的余弦
值為 ( )
A. B. C. D.0
答案 B
解析 圓的方程整理為(x-1)2+(y-1)2=1,C(1,1),
∴sin∠APC=,
則cos∠APB=cos 2∠APC
=1-2×2=.
5. 圓C1:x2+y2+2x+2y-2=0與圓C2:x2+y2-4x-2y+1=0的公切線有 6、且僅有( )
A.1條 B.2條 C.3條 D.4條
答案 B
解析 ⊙C1:(x+1)2+(y+1)2=4,
圓心C1(-1,-1),半徑r1=2.
⊙C2:(x-2)2+(y-1)2=4,圓心C2(2,1),半徑r2=2.
∴|C1C2|=,∴|r1-r2|=0<|C1C2| 7、數(shù)即為直線方程與圓方程聯(lián)立而成的方程組解的個數(shù);最短弦長可用代數(shù)法或幾何法判定.
方法一 (1)證明 由
消去y得(k2+1)x2-(2-4k)x-7=0,
因為Δ=(2-4k)2+28(k2+1)>0,
所以不論k為何實數(shù),直線l和圓C總有兩個交點.
(2)解 設(shè)直線與圓交于A(x1,y1)、B(x2,y2)兩點,
則直線l被圓C截得的弦長
|AB|=|x1-x2|
=2=2 ,
令t=,則tk2-4k+(t-3)=0,
當t=0時,k=-,當t≠0時,因為k∈R,
所以Δ=16-4t(t-3)≥0,解得-1≤t≤4,且t≠0,
故t=的最大值為4,此時|AB|最小為 8、2.
方法二 (1)證明 圓心C(1,-1)到直線l的距離d=,圓C的半徑R=2,R2-d2=12-=,而在S=11k2-4k+8中,
Δ=(-4)2-4×11×8<0,
故11k2-4k+8>0對k∈R恒成立,
所以R2-d2>0,即d 9、 由平面幾何知識知過圓內(nèi)定點P(0,1)的弦,只有和AC (C為圓心)垂直時才最短,而此時點P(0,1)為弦AB的中點,由勾股定理,知|AB|=2=2,
即直線l被圓C截得的最短弦長為2.
探究提高 (1)利用圓心到直線的距離可判斷直線與圓的位置關(guān)系,也可利用直線的方程與圓的方程聯(lián)立后得到的一元二次方程的判別式來判斷直線與圓的位置關(guān)系;
(2)勾股定理是解決有關(guān)弦問題的常用方法.
(xx·安徽)若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a的取值范圍是 ( )
A.[-3,-1] B.[-1,3]
C.[-3,1] 10、 D.(-∞,-3]∪[1,+∞)
答案 C
解析 由題意知,圓心為(a,0),半徑r=.
若直線與圓有公共點,則圓心到直線的距離小于或等于半徑,
即≤,∴|a+1|≤2.∴-3≤a≤1.
題型二 圓與圓的位置關(guān)系
例2 a為何值時,圓C1:x2+y2-2ax+4y+a2-5=0和圓C2:x2+y2+2x-2ay+a2-3
=0.
(1)外切;(2)相交;(3)外離;(4)內(nèi)切.
思維啟迪:(1)分別表示出兩圓的圓心坐標和半徑;(2)利用圓心距與兩圓半徑的關(guān)系求解.
解 將兩圓方程寫成標準方程.
C1:(x-a)2+(y+2)2=9,
C2:(x+1)2+( 11、y-a)2=4.
∴兩圓的圓心和半徑分別為
C1(a,-2),r1=3,C2(-1,a),r2=2,
設(shè)兩圓的圓心距為d,
則d2=(a+1)2+(-2-a)2=2a2+6a+5.
(1)當d=5,即2a2+6a+5=25時,兩圓外切,
此時a=-5或a=2.
(2)當1 12、和與差之間的關(guān)系,一般不采用代數(shù)法.
已知圓C與圓C1:x2+y2-2x=0相外切,并且與直線l:x+y=0相切于點P(3,-),求圓C的方程.
解 設(shè)所求圓的圓心為C(a,b),半徑長為r,
則圓C的標準方程為(x-a)2+(y-b)2=r2,
∵C(a,b)在過點P且與l垂直的直線上,
∴=.①
又∵圓C與l相切于點P,∴r=.②
∵圓C與圓C1相外切,∴=r+1.③
由①得a-b-4=0,
從而由②③④可得=|2a-6|+1,④
解得,或,此時,r=2或r=6.
即所求的圓C的方程為
(x-4)2+y2=4或x2+(y+4)2=36.
題型三 直線與圓的綜合問 13、題
例3 已知⊙M:x2+(y-2)2=1,Q是x軸上的動點,QA,QB分別切⊙M于A,B兩點.
(1)若|AB|=,求|MQ|、Q點的坐標以及直線MQ的方程;
(2)求證:直線AB恒過定點.
思維啟迪:第(1)問利用平面幾何的知識解決;第(2)問設(shè)點Q的坐標,從而確定點A、B的坐標與AB的直線方程.
(1)解 設(shè)直線MQ交AB于點P,則|AP|=,
又|AM|=1,AP⊥MQ,AM⊥AQ,
得|MP|==,
又∵|MQ|=,∴|MQ|=3.
設(shè)Q(x,0),而點M(0,2),由=3,
得x=±,則Q點的坐標為(,0)或(-,0).
從而直線MQ的方程為2x+y-2=0或 14、2x-y+2=0.
(2)證明 設(shè)點Q(q,0),由幾何性質(zhì),可知A、B兩點在以QM為直徑的圓上,此圓的方程為x(x-q)+y(y-2)=0,而線段AB是此圓與已知圓的公共弦,即為qx-2y+3=0,所以直線AB恒過定點.
探究提高 在解決直線與圓的位置關(guān)系時要充分考慮平面幾何知識的運用,如在直線與圓相交的有關(guān)線段長度計算中,要把圓的半徑、圓心到直線的距離、直線被圓截得的線段長度放在一起綜合考慮,不要單純依靠代數(shù)計算,這樣既簡單又不容易出錯.
已知點P(0,5)及圓C:x2+y2+4x-12y+24=0.
(1)若直線l過點P且被圓C截得的線段長為4,求l的方程;
(2)求過P點的 15、圓C的弦的中點的軌跡方程.
解 (1)如圖所示,|AB|=4,將圓C方程化為標準方程為(x+2)2+(y-6)2=16,
∴圓C的圓心坐標為(-2,6),半徑r=4,設(shè)D是線段AB的中點,則CD⊥AB,
∴|AD|=2,|AC|=4.C點坐標為(-2,6).
在Rt△ACD中,可得|CD|=2.
設(shè)所求直線l的斜率為k,則直線l的方程為:y-5=kx,即kx-y+5=0.
由點C到直線AB的距離公式:=2,
得k=.
故直線l的方程為3x-4y+20=0.
又直線l的斜率不存在時,也滿足題意,此時方程為x=0.
∴所求直線l的方程為x=0或3x-4y+20=0.
(2)設(shè) 16、過P點的圓C的弦的中點為D(x,y),
則CD⊥PD,即·=0,
∴(x+2,y-6)·(x,y-5)=0,
化簡得所求軌跡方程為x2+y2+2x-11y+30=0.
與圓有關(guān)的探索問題
典例:(12分)已知圓C:x2+y2-2x+4y-4=0.問在圓C上是否存在兩點A、B關(guān)于直線y=kx-1對稱,且以AB為直徑的圓經(jīng)過原點?若存在,寫出直線AB的方程;若不存在,說明理由.
審題視角 (1)假設(shè)存在兩點A、B關(guān)于直線對稱,則直線過圓心.
(2)若以AB為直徑的圓過原點,則OA⊥OB,轉(zhuǎn)化為·=0.
規(guī)范解答
解 圓C的方程可化為(x-1)2+(y+2)2=9,圓心為C 17、(1,-2).假設(shè)在圓C上存在兩點A、B滿足條件,
則圓心C(1,-2)在直線y=kx-1上,即k=-1.[3分]
于是可知,kAB=1.
設(shè)lAB:y=x+b,代入圓C的方程,
整理得2x2+2(b+1)x+b2+4b-4=0,
則Δ=4(b+1)2-8(b2+4b-4)>0,即b2+6b-9<0.
解得-3-3
18、+x2)+b2=0.[10分]
∴b2+4b-4-b2-b+b2=0,化簡得b2+3b-4=0.
解得b=-4或b=1,均滿足Δ>0,
即直線AB的方程為x-y-4=0,或x-y+1=0.[12分]
答題模板
第一步:假設(shè)符合要求的結(jié)論存在.
第二步:從條件出發(fā)(即假設(shè))利用直線與圓的關(guān)系求解.
第三步:確定符合要求的結(jié)論存在或不存在.
第四步:給出明確結(jié)果.
第五步:反思回顧,查看關(guān)鍵點,易錯點及答題規(guī)范.
溫馨提醒 (1)本題是與圓有關(guān)的探索類問題,要注意充分利用圓的幾何性質(zhì)答題.(2)要注意解答這類題目的答題格式.使答題過程完整規(guī)范.(3)本題的易錯點是轉(zhuǎn)化方向不明確 19、,思路不清晰.
方法與技巧
1. 過圓上一點(x0,y0)的圓的切線方程的求法
先求切點與圓心連線的斜率k,由垂直關(guān)系知切線斜率為-,由點斜式方程可求切線方程.若切線斜率不存在,則由圖形寫出切線方程x=x0.
2. 過圓外一點(x0,y0)的圓的切線方程的求法
(1)幾何方法
當斜率存在時,設(shè)為k,切線方程為y-y0=k(x-x0),即kx-y+y0-kx0=0.由圓心到直線的距離等于半徑,即可得出切線方程.
(2)代數(shù)方法
設(shè)切線方程為y-y0=k(x-x0),即y=kx-kx0+y0,代入圓方程,得一個關(guān)于x的一元二次方程,由Δ=0,求得k,切線方程即可求出.
3. 20、兩圓公共弦所在直線方程求法
若兩圓相交時,把兩圓的方程作差消去x2和y2就得到兩圓的公共弦所在的直線方程.
4. 圓的弦長的求法
(1)幾何法:設(shè)圓的半徑為r,弦心距為d,弦長為l,則2=r2-d2.
(2)代數(shù)法:設(shè)直線與圓相交于A(x1,y1),B(x2,y2)兩點,解方程組消y后得關(guān)于x的一元二次方程,從而求得x1+x2,x1x2,則弦長為
|AB|=(k為直線斜率).
失誤與防范
1. 求圓的弦長問題,注意應(yīng)用圓的性質(zhì)解題,即用圓心與弦中點連線與弦垂直的性質(zhì),可以用勾股定理或斜率之積為-1列方程來簡化運算.
2. 過圓上一點作圓的切線有且只有一條;過圓外一點作圓的切線有 21、且只有兩條,若僅求得一條,除了考慮運算過程是否正確外,還要考慮斜率不存在的情況,以防漏解.
A組 專項基礎(chǔ)訓(xùn)練
(時間:35分鐘,滿分:57分)
一、選擇題(每小題5分,共20分)
1. “a=3”是“直線y=x+4與圓(x-a)2+(y-3)2=8相切”的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
答案 A
解析 若直線y=x+4與圓(x-a)2+(y-3)2=8相切,則有=2,即|a+1|=4,所以a=3或-5.但當a=3時,直線y=x+4與圓(x-a)2+(y-3)2=8一定相切,故“a=3” 22、是“直線y=x+4與圓(x-a)2+(y-3)2=8相切”的充分不必要條件.
2. (xx·重慶)對任意的實數(shù)k,直線y=kx+1與圓x2+y2=2的位置關(guān)系一定是 ( )
A.相離 B.相切
C.相交但直線不過圓心 D.相交且直線過圓心
答案 C
解析 ∵x2+y2=2的圓心(0,0)到直線y=kx+1的距離
d==≤1,
又∵r=,∴0 23、斜角為60°的直線方程為x-y=0,圓x2+(y-2)2=4的圓心(0,2)到直線的距離為d==1,因此弦長為2=2=2.
4. 直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點,若|MN|≥2,則k的取值范圍是 ( )
A. B.
C. D.
答案 B
解析 如圖,若|MN|=2,則由圓與直線的位置關(guān)系可知圓心到
直線的距離滿足d2=22-()2=1.
∵直線方程為y=kx+3,
∴d==1,
解得k=±.
若|MN|≥2,則-≤k≤.
二、填空題(每小題5分,共15分)
5. 設(shè)直線ax-y 24、+3=0與圓(x-1)2+(y-2)2=4相交于A、B兩點,且弦AB的長為2,則a=________.
答案 0
解析 d=,由已知條件d2+3=4,
即d=1,=1,解得a=0.
6. 若圓x2+y2=4與圓x2+y2+2ay-6=0 (a>0)的公共弦長為2,則a=________.
答案 1
解析 方程x2+y2+2ay-6=0與x2+y2=4.
相減得2ay=2,則y=.由已知條件=,
即a=1.
7. (xx·江蘇)在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的 25、最大值是________.
答案
解析 圓C的標準方程為(x-4)2+y2=1,圓心為(4,0).
由題意知(4,0)到kx-y-2=0的距離應(yīng)不大于2,
即≤2.整理,得3k2-4k≤0.解得0≤k≤.
故k的最大值是.
三、解答題(共22分)
8. (10分)求過點P(4,-1)且與圓C:x2+y2+2x-6y+5=0切于點M(1,2)的圓的方程.
解 設(shè)所求圓的圓心為A(m,n),半徑為r,
則A,M,C三點共線,且有|MA|=|AP|=r,
因為圓C:x2+y2+2x-6y+5=0的圓心為C(-1,3),
則,
解得m=3,n=1,r=,
所以所求圓的方程為 26、(x-3)2+(y-1)2=5.
9. (12分)已知點A(1,a),圓x2+y2=4.
(1)若過點A的圓的切線只有一條,求a的值及切線方程;
(2)若過點A且在兩坐標軸上截距相等的直線與圓相切,求a的值及切線方程.
解 (1)由于過點A的圓的切線只有一條,則點A在圓上,故12+a2=4,∴a=±.
當a=時,A(1,),切線方程為x+y-4=0;
當a=-時,A(1,-),切線方程為x-y-4=0,
∴a=時,切線方程為x+y-4=0,
a=-時,切線方程為x-y-4=0.
(2)設(shè)直線方程為x+y=b,由于直線過點A,∴1+a=b,
∴直線方程為x+y=1+a,即x+ 27、y-a-1=0.
又直線與圓相切,∴d==2,∴a=±2-1.
∴切線方程為x+y+2=0或x+y-2=0.
B組 專項能力提升
(時間:25分鐘,滿分:43分)
一、選擇題(每小題5分,共15分)
1. (xx·天津)設(shè)m,n∈R,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是 ( )
A.[1-,1+]
B.(-∞,1-]∪[1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2]∪[2+2,+∞)
答案 D
解析 圓心(1,1)到直線(m+1)x+(n+1)y-2=0的距離為=1 28、,
所以m+n+1=mn≤(m+n)2,
所以m+n≥2+2或m+n≤2-2.
2. (xx·江西)若曲線C1:x2+y2-2x=0與曲線C2:y(y-mx-m)=0有四個不同的交點,則實數(shù)m的取值范圍是 ( )
A.(-,) B.(-,0)∪(0,)
C.[-,] D.(-∞,-)∪(,+∞)
答案 B
解析 C1:(x-1)2+y2=1,
C2:y=0或y=mx+m=m(x+1).
當m=0時,C2:y=0,此時C1與C2顯然只有兩個交點;
當m≠0時,要滿足題意,需圓(x-1)2+y2=1與直線y=m(x+1) 29、有兩交點,當圓與直線相切時,m=±,即直線處于兩切線之間時滿足題意,則- 30、+(1-x)2=x2的兩個根,
整理得x2-10x+17=0,∴a+b=10,ab=17.
∴(a-b)2=(a+b)2-4ab=100-4×17=32,
∴|C1C2|===8.
二、填空題(每小題5分,共15分)
4. 若過點A(a,a)可作圓x2+y2-2ax+a2+2a-3=0的兩條切線,則實數(shù)a的取值范圍為______________.
答案 (-∞,-3)∪
解析 圓方程可化為(x-a)2+y2=3-2a,
由已知可得,解得a<-3或1
31、_________.
答案 (0,)
解析 圓的標準方程為(x+2)2+y2=9,令x=0得圓與y軸的兩個交點為(0,±),如圖,直線kAM=.若過定點M(-1,0)且斜率為k的直線與圓x2+4x+y2-5=0在第一象限內(nèi)的部分有交點,則k的取值范圍是0 32、直線l1:x+2y+7=0相切.過
點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
解 (1)設(shè)圓A的半徑為R,
由于圓A與直線l1:x+2y+7=0相切,
∴R==2.
∴圓A的方程為(x+1)2+(y-2)2=20.
(2)①當直線l與x軸垂直時,易知x=-2符合題意;
②當直線l與x軸不垂直時,設(shè)直線l的方程為y=k(x+2),
即kx-y+2k=0.
連接AQ,則AQ⊥MN.
∵|MN|=2,
∴|AQ|==1,
則由|AQ|==1,得k=,
∴直線l:3x-4y+6=0.
故直線l的方程為x=-2或3x-4y+6=0.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復(fù)習題含答案
- 1 各種煤礦安全考試試題含答案