2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第1章 三角形的證明 1 等腰三角形教案 (新版)北師大版

上傳人:xt****7 文檔編號(hào):105239534 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):13 大?。?5.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第1章 三角形的證明 1 等腰三角形教案 (新版)北師大版_第1頁(yè)
第1頁(yè) / 共13頁(yè)
2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第1章 三角形的證明 1 等腰三角形教案 (新版)北師大版_第2頁(yè)
第2頁(yè) / 共13頁(yè)
2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第1章 三角形的證明 1 等腰三角形教案 (新版)北師大版_第3頁(yè)
第3頁(yè) / 共13頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第1章 三角形的證明 1 等腰三角形教案 (新版)北師大版》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第1章 三角形的證明 1 等腰三角形教案 (新版)北師大版(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第1章 三角形的證明 1 等腰三角形教案 (新版)北師大版 教學(xué)目標(biāo) 一、基本目標(biāo) 1.了解作為證明基礎(chǔ)的8條公理的內(nèi)容. 2.使學(xué)生經(jīng)歷“探索—— 發(fā)現(xiàn)——猜想——證明”的過(guò)程,學(xué)會(huì)用綜合法證明等腰三角形的有關(guān)性質(zhì)定理. 3.讓學(xué)生學(xué)會(huì)分析幾何證明題的思路,并掌握證明的基本步驟和書(shū)寫(xiě)格式. 4.經(jīng)歷作輔助線(xiàn)的證明過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推理意識(shí),培養(yǎng)主動(dòng)探究的習(xí)慣,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 等腰三角形的性質(zhì)及推論. 【教學(xué)難點(diǎn)】 運(yùn)用等腰三角形的性質(zhì)及推論解決相關(guān)問(wèn)題及證明的書(shū)寫(xiě)格式. 教學(xué)過(guò)程 環(huán)節(jié)

2、1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P2~P3的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.兩角分別相等且其中一組等角的對(duì)邊相等的兩個(gè)三角形全等. 2.全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等. 3.等腰三角形的兩底角相等,簡(jiǎn)述為:等邊對(duì)等角. 4.等腰三角形“三線(xiàn)合一”:等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)及底邊上的高線(xiàn)互相重合. 5.如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是( B ) A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD 6.如圖,△ABC≌△CDA,那么下列結(jié)論錯(cuò)誤的是( D ) A.∠1=

3、∠2  B.AC=CA C.∠D=∠B  D.AC=BC 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】如圖,AB=AC=AD,若∠BAD=80°,則∠BCD=(  ) A.80°  B.100°   C.140°  D.160° 【互動(dòng)探索】(引發(fā)學(xué)生思考)由邊相等可以得到什么?這與∠BCD有什么關(guān)系? 【分析】∵∠BAD=80°,∴∠B+∠BCD+∠D=360°-∠BAD=280°.又∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠D,∴∠BCD=∠ACB+∠ACD=280°÷2=140°. 【答案】C 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))求角的

4、度數(shù)時(shí),需根據(jù)實(shí)際情況分析:(1)在等腰三角形中,要考慮三角形內(nèi)角和定理;(2)有平行線(xiàn)時(shí),要考慮平行線(xiàn)的性質(zhì):兩直線(xiàn)平行,同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ);(3)兩條相交直線(xiàn)中,對(duì)頂角相等,互為鄰補(bǔ)角的兩角之和等于180°. 【例2】等腰三角形的一個(gè)角等于30°,求它其余兩角的度數(shù). 【互動(dòng)探索】(引發(fā)學(xué)生思考)等腰三角形的角有什么特征?已知角是頂角還是底角? 【解答】分情況討論: 當(dāng)?shù)捉菫?0°時(shí),頂角度數(shù)為180°-2×30°=120°; 當(dāng)頂角為30°時(shí),底角度數(shù)為(180°-30°)÷2=75°. 綜上,該等腰三角形其余兩角的度數(shù)為30°,120°或75°,75°.

5、 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))已知的一個(gè)銳角可以是等腰三角形的頂角,也可以是底角;一個(gè)鈍角只能是等腰三角形的頂角.分類(lèi)討論是正確解答本題的關(guān)鍵. 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.至少有兩邊相等的三角形是( B ) A.等邊三角形  B.等腰三角形 C.直角三角形  D.銳角三角形 2.在△ABC中,若AB=AC,∠A=44°,則∠B=68度. 3.已知等腰三角形兩條邊的長(zhǎng)分別是3和6,則它的周長(zhǎng)等于15. 4.如圖所示,已知AB=AC,F(xiàn)D⊥BC于點(diǎn)D,DE⊥AB于點(diǎn)E,若∠AFD=145°,則∠EDF=55度. 5.如圖所示,點(diǎn)D是△ABC內(nèi)一點(diǎn),AB=AC,∠1

6、=∠2.求證:AD平分∠BAC. 證明:∵∠1=∠2,∴BD=DC.∵AB=AC,AD=AD,∴△ADB≌△ADC,∴∠BAD=∠CAD,即AD平分∠BAC. 活動(dòng)3 拓展延伸(學(xué)生對(duì)學(xué)) 【例3】如圖,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分線(xiàn)相交于點(diǎn)D,∠ADC=125°.求∠ACB和∠BAC的度數(shù). 【互動(dòng)探索】根據(jù)等腰三角形“三線(xiàn)合一”可得AE⊥BC→求出∠CDE→根據(jù)“直角三角形兩銳角互余”求出∠DCE→根據(jù)角平分線(xiàn)的定義求出∠ACB→根據(jù)“等腰三角形兩底角相等”列式求出∠BAC. 【解答】∵AB=AC,AE平分∠BAC,∴AE⊥BC.∵∠ADC=12

7、5°,∴∠CDE=180°-∠ADC=55°,∴∠DCE=90°-∠CDE=35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180°-(∠B+∠ACB)=40°. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))利用等腰三角形“三線(xiàn)合一”的性質(zhì)進(jìn)行計(jì)算,有兩種類(lèi)型:一是求邊長(zhǎng),求邊長(zhǎng)時(shí)應(yīng)利用等腰三角形底邊上的中線(xiàn)與其他兩線(xiàn)互相重合;二是求角度的大小,求角度時(shí),應(yīng)利用等腰三角形的頂角平分線(xiàn)或底邊上的高與其他兩線(xiàn)互相重合. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 1.兩三角形全等的判定:AAS、ASA、SSS、SAS. 2.

8、等腰三角形 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 第2課時(shí) 等邊三角形的性質(zhì) 教學(xué)目標(biāo) 一、基本目標(biāo) 1.進(jìn)一步學(xué)習(xí)等腰三角形的相關(guān)性質(zhì),了解等腰三角形兩底角的平分線(xiàn)(兩腰上的高、中線(xiàn))的性質(zhì). 2.學(xué)習(xí)等邊三角形的性質(zhì),并能夠運(yùn)用其解決問(wèn)題. 3.把等腰三角形與等邊三角形的性質(zhì)進(jìn)行比較,體會(huì)等腰三角形和等邊三角形的相同之處和不同之處. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 等腰三角形、等邊三角形的相關(guān)性質(zhì). 【教學(xué)難點(diǎn)】 等腰三角形、等邊三角形的相關(guān)性質(zhì)的應(yīng)用. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P5~P6的內(nèi)容,完成下面練習(xí).

9、【3 min反饋】 1.等腰三角形兩個(gè)底角的平分線(xiàn)相等;等腰三角形兩腰上的高相等;等腰三角形兩腰上的中線(xiàn)相等. 2.等邊三角形的三個(gè)內(nèi)角都相等,并且每個(gè)角都等于60°. 3.一個(gè)等腰非等邊三角形中,它的角平分線(xiàn)、中線(xiàn)及高線(xiàn)的條數(shù)共為(重合的算一條)( B ) A.9  B.7   C.6  D.5 4.等腰三角形一腰上的高與底邊所成的角等于( B ) A.頂角  B.頂角的一半 C.頂角的2倍  D.底角的一半 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】 如圖,在△ABC中,AB=AC,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,求證:DE∥BC.

10、【互動(dòng)探索】(引發(fā)學(xué)生思考)要證DE∥BC,需證∠ADE=∠ABC,從而結(jié)合已知條件考慮證△BEC≌△CDB即可. 【證明】∵AB=AC,∴∠ABC=∠ACB.又∵CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,∴∠AEB=∠ADC=90°,∴∠ABE=∠ACD,∴∠ABC-∠ABE=∠ACB-∠ACD,∴∠EBC=∠DCB.在△BEC和△CDB中,∵ ∴△BEC≌△CDB,∴BD=CE,∴AB-BD=AC-CE,即AD=AE,∴∠ADE=∠AED.又∵∠A是△ADE和△ABC的頂角,∴∠ADE=∠ABC,∴DE∥BC. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))等腰三角形兩底角的平分線(xiàn)相等,兩腰上的中線(xiàn)相等

11、,兩腰上的高相等. 【例2】如圖,△ABC是等邊三角形,E是AC上一點(diǎn),D是BC延長(zhǎng)線(xiàn)上一點(diǎn),連結(jié)BE、DE.若∠ABE=40°,BE=DE,求∠CED的度數(shù). 【互動(dòng)探索】(引發(fā)學(xué)生思考)由△ABC是等邊三角形可以得到哪些結(jié)論?如何利用這些結(jié)論求∠CED? 【解答】∵△ABC是等邊三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))等邊三角形是特殊的三角形,它的三個(gè)內(nèi)角都是60°,這個(gè)性質(zhì)常常應(yīng)用在求三角形角度的問(wèn)題上,所以

12、必須熟練掌握. 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.如圖,在四邊形ABCD中,AC、BD為對(duì)角線(xiàn),AB=BC=AC=BD,則∠ADC的大小為( D ) A.120°  B.135°   C.145°  D.150° 2.如圖所示,△ABC為等邊三角形,AQ=PQ,PR=PS,PR⊥AB于點(diǎn)R,PS⊥AC于點(diǎn)S,則下列四個(gè)結(jié)論正確的是( A ) ①點(diǎn)P在∠BAC的平分線(xiàn)上; ②AS=AR;③QP∥AR;④△BRP≌△CSP. A.全部正確  B.僅①和②正確 C.僅②和③正確  D.僅①和③正確 3.已知等腰三角形一腰的垂直平分線(xiàn)與另一腰所在直線(xiàn)的夾角為40°,則此等腰三

13、角形的頂角為50°或130°. 4.如圖所示,已知l∥m,等邊三角形ABC的頂點(diǎn)B在直線(xiàn)m上,邊BC與直線(xiàn)m所夾銳角為20°,求∠α的度數(shù). 解:如題圖,過(guò)點(diǎn)C作CE∥直線(xiàn)m.∵l∥m,∴l(xiāng)∥m∥CE,∴∠ACE=∠α,∠BCE=∠CBF=20°.在等邊三角形ABC中,∠ACB=60°,∴∠α+∠CBF=∠ACB=60°,∴∠α=40°. 5.如圖,△ABC為正三角形,點(diǎn)M是邊BC上任意一點(diǎn),點(diǎn)N是邊CA上任意一點(diǎn),且BM=CN,BN與AM相交于點(diǎn)Q,求∠BQM的度數(shù). 解:∵△ABC為正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.在△AMB和△BNC中,∵ ∴△A

14、MB≌△BNC,∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°. 活動(dòng)3 拓展延伸(學(xué)生對(duì)學(xué)) 【例3】如圖,已知等邊△ABC中,D是AC的中點(diǎn),E是BC延長(zhǎng)線(xiàn)上的一點(diǎn),且CE=CD,DM⊥BC,垂足為M,求證:BM=EM. 【互動(dòng)探索】要證BM=EM,由題意證△BDM≌△EDM即可. 【證明】連結(jié)BD.∵在等邊△ABC中,D是AC的中點(diǎn),∴∠ABC=∠ACB=60°,∴∠DBC=∠ABC=30°.∵CE=CD,∴∠CDE=∠E.∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°.∵DM⊥BC,∴∠DMB=∠DME=

15、90°.在△DMB和△DME中,∵ ∴△DMB≌△DME,∴BM=EM. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))證明線(xiàn)段相等可以利用三角形全等得到.此外,要明確等邊三角形是特殊的等腰三角形,所以等腰三角形的性質(zhì)完全適合等邊三角形. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 1.等腰三角形兩底角的平分線(xiàn)相等,等腰三角形兩腰上的高相等;等腰三角形兩腰上的中線(xiàn)相等. 2.等邊三角形的三個(gè)內(nèi)角都相等,并且每個(gè)角都等于60°. 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 第3課時(shí) 等腰三角形的判定與反證法 教學(xué)目標(biāo) 一、基本目標(biāo) 1.理解等腰三角形的判定定理,并會(huì)運(yùn)用其進(jìn)行簡(jiǎn)

16、單的證明. 2.了解反證法的基本證明思路,培養(yǎng)學(xué)生的逆向思維能力,并能簡(jiǎn)單應(yīng)用. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 掌握等腰三角形的判定定理. 【教學(xué)難點(diǎn)】 利用反證法進(jìn)行證明. 教學(xué)過(guò)程 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P8~P9的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.有兩個(gè)角相等的三角形是等腰三角形,簡(jiǎn)述為:等角對(duì)等邊. 2.先假設(shè)命題的結(jié)論不成立,然后推導(dǎo)出與定義、基本事實(shí)、已有定理或已知條件相矛盾的結(jié)果,從而證明命題的結(jié)論一定成立,這種證明方法稱(chēng)為反證法. 3.用反證法證明命題“一個(gè)三角形的三個(gè)外角中,至多有一個(gè)銳角”的第一步是假

17、設(shè)三角形的三個(gè)外角中,有兩個(gè)銳角. 4.如圖所示,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分線(xiàn).若在邊AB上截取BE=BC,連結(jié)DE,則圖中等腰三角形共有( D ) A.2個(gè)  B.3個(gè)   C.4個(gè)  D.5個(gè) 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】 如圖,在△ABC中,∠ACB=90°,CD是AB邊上的高,AE是∠BAC的平分線(xiàn),AE與CD交于點(diǎn)F,求證:△CEF是等腰三角形. 【互動(dòng)探索】(引發(fā)學(xué)生思考)要證△CEF是等腰三角形,結(jié)合已知條件考慮證明CE=CF即可. 【證明】∵在△ABC中,∠ACB=90°,∴∠

18、B+∠BAC=90°.∵CD是AB邊上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的平分線(xiàn),∴∠BAE=∠EAC.又∵∠B+∠BAE=∠AEC,∠ACD+∠EAC=∠CFE,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))“等角對(duì)等邊”是判定等腰三角形的重要依據(jù),是先有角相等再有邊相等,只限于在同一個(gè)三角形中,若在兩個(gè)不同的三角形中,此結(jié)論不一定成立. 【例2】求證:△ABC中不能有兩個(gè)鈍角. 【互動(dòng)探索】(引發(fā)學(xué)生思考)用反證法證明時(shí),假設(shè)什么? 【證明】假設(shè)△ABC中能有兩個(gè)鈍角,不妨設(shè)∠A<90°,∠B>9

19、0°,∠C>90°, 所以∠A+∠B+∠C>180°, 這與三角形的內(nèi)角和為180°矛盾,所以假設(shè)不成立, 因此原命題正確,即△ABC中不能有兩個(gè)鈍角. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))反證法的步驟:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論反面的所有可能的情況.如果只有一種,那么否定一種就可以了;如果有多種情況,則必須一一否定. 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.用反證法證明命題“三角形中必有一個(gè)內(nèi)角小于或等于60°”時(shí),首先應(yīng)假設(shè)這個(gè)三角形中( C ) A.有一個(gè)內(nèi)角大于60° B.有一個(gè)內(nèi)角小于60°

20、 C.每一個(gè)內(nèi)角都大于60° D.每一個(gè)內(nèi)角都小于60° 2.在等腰梯形ABCD中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,則圖中的等腰三角形有( D ) A.1個(gè)  B.2個(gè)   C.3個(gè)  D.4個(gè) 3.如圖,在4×3的正方形網(wǎng)格中,點(diǎn)A、B分別在格點(diǎn)上,在圖中確定格點(diǎn)C,則以A、B、C為頂點(diǎn)的等腰三角形有3個(gè). 4.用反證法證明等腰三角形的底角必為銳角. 證明:不妨設(shè)等腰三角形△ABC中,∠A為頂角,則分情況證明.①設(shè)∠B、∠C都是直角,則∠B+∠C=180°,故∠A+∠B+∠C=180°+∠A>180°,這與三角形內(nèi)角和等于180°矛盾;②設(shè)∠B、∠C都是

21、鈍角,則∠B+∠C>180°,故∠A+∠B+∠C>180°,這與三角形內(nèi)角和等于180°矛盾.綜上所述,假設(shè)①②錯(cuò)誤,所以∠B、∠C只能為銳角,即等腰三角形的底角必為銳角. 5.如圖所示,D為△ABC的邊AB的延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,交BC于點(diǎn)E,且BD=BE,求證:△ABC是等腰三角形. 證明:∵DF⊥AC,∴∠DFA=∠EFC=90°,∴∠A+∠D=90°,∠C+∠1=90°,∴∠A+∠D=∠C+∠1.∵BD=BE,∴∠2=∠D.∵∠1=∠2,∴∠1=∠D,∴∠A+∠D=∠C+∠D,∴∠A=∠C,∴AB=BC,∴△ABC是等腰三角形. 活動(dòng)3 拓展延伸(

22、學(xué)生對(duì)學(xué)) 【例3】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE. (1)求證:△DEF是等腰三角形; (2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù). 【互動(dòng)探索】(1)根據(jù)“等邊對(duì)等角”可得∠B=∠C,從而利用“邊角邊”證明△BDE≌△CEF,進(jìn)而根據(jù)“全等三角形對(duì)應(yīng)邊相等”可得DE=EF,即可證得結(jié)論;(2)根據(jù)“全等三角形對(duì)應(yīng)角相等”可得∠BDE=∠CEF,從而得到∠BED+∠CEF=∠BED+∠BDE,再利用三角形的外角定理求出∠B=∠DEF,進(jìn)而求出∠DEF. 【解答】(1)證明:∵AB=AC,∴∠B=∠C.在△BDE和△

23、CEF中,∵ ∴△BDE≌△CEF,∴DE=EF,∴△DEF是等腰三角形. (2)∵△BDE≌△CEF,∴∠BDE=∠CEF,∴∠BED+∠CEF=∠BED+∠BDE.∵∠B+∠BDE=∠DEF+∠CEF,∴∠B=∠DEF.∵∠A=50°,AB=AC,∴∠B=×(180°-∠A)=65°,∴∠DEF=65°. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))等腰三角形提供了很多相等的線(xiàn)段和相等的角,判定三角形是等腰三角形是證明線(xiàn)段相等、角相等的重要手段. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 1.等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊). 2.反證法

24、的步驟:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立. 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)! 第4課時(shí)  等邊三角形的判定及含30°角的直角三角形的性質(zhì) 教學(xué)目標(biāo) 一、基本目標(biāo) 1.理解等邊三角形的判定定理及其證明,理解含有30°角的直角三角形性質(zhì)及其證明,并能利用這些定理解決一些簡(jiǎn)單的問(wèn)題. 2.經(jīng)歷運(yùn)用幾何符號(hào)和圖形描述命題的條件和結(jié)論的過(guò)程,建立初步的符號(hào)感,發(fā)展抽象思維. 二、重難點(diǎn)目標(biāo) 【教學(xué)重點(diǎn)】 等邊三角形判定定理的發(fā)現(xiàn)與證明. 【教學(xué)難點(diǎn)】 理解并掌握含30°角直角三角形的性質(zhì),能靈活運(yùn)用其解決有關(guān)問(wèn)題. 教學(xué)過(guò)程

25、 環(huán)節(jié)1 自學(xué)提綱,生成問(wèn)題 【5 min閱讀】 閱讀教材P10~P12的內(nèi)容,完成下面練習(xí). 【3 min反饋】 1.三個(gè)角都相等的三角形是等邊三角形;有一個(gè)角等于60°的等腰三角形是等邊三角形. 2.在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半. 3.等邊三角形中,兩條中線(xiàn)所夾的鈍角的度數(shù)為( A ) A.120°  B.130°   C.150°  D.160° 4.下列三角形:①有兩個(gè)角等于60°;②有一個(gè)角等于60°的等腰三角形;③三個(gè)外角(每個(gè)頂點(diǎn)處各取一個(gè)外角)都相等的三角形;④一腰上的中線(xiàn)也是這條腰上的高的等腰三角形.其中是等邊三

26、角形的有( D ) A.①②③  B.①②④ C.①③  D.①②③④ 環(huán)節(jié)2 合作探究,解決問(wèn)題 活動(dòng)1 小組討論(師生互學(xué)) 【例1】已知a、b、c是△ABC的三邊,且滿(mǎn)足關(guān)系式a2+c2=2ab+2bc-2b2,試說(shuō)明△ABC是等邊三角形. 【互動(dòng)探索】(引發(fā)學(xué)生思考)證明△ABC是等邊三角形應(yīng)從哪些角度考慮?(邊、角).結(jié)合已知條件,本題應(yīng)從邊的角度考慮證明△ABC是等邊三角形. 【證明】原關(guān)系式整理,得a2+c2-2ab-2bc+2b2=0, ∴a2+b2-2ab+c2-2bc+b2=0, ∴(a-b)2+(b-c)2=0, ∴a-b=0且b-c=0,即a=b且b

27、=c, ∴a=b=c, ∴△ABC是等邊三角形. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))(1)幾個(gè)非負(fù)數(shù)的和為零,那么每一個(gè)非負(fù)數(shù)都等于零;(2)有兩邊相等的三角形是等腰三角形,三邊都相等的三角形是等邊三角形,等邊三角形是特殊的等腰三角形. 【例2】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜邊AB上的高,AD=3 cm,則AB的長(zhǎng)度是(  ) A.3 cm  B.6 cm   C.9 cm  D.12 cm 【互動(dòng)探索】(引發(fā)學(xué)生思考)在Rt△ABC中,∵CD是斜邊AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°,∴在Rt△ACD中,AC=2AD=6

28、 cm,在Rt△ABC中,AB=2AC=12 cm.即AB的長(zhǎng)度是12 cm. 【答案】D 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))運(yùn)用含30°角的直角三角形的性質(zhì)求線(xiàn)段長(zhǎng)時(shí),要分清線(xiàn)段所在的直角三角形. 活動(dòng)2 鞏固練習(xí)(學(xué)生獨(dú)學(xué)) 1.若三角形中,三條中線(xiàn)都垂直于所對(duì)的邊,則此三角形是( D ) A.等腰三角形  B.鈍角三角形 C.直角三角形  D.等邊三角形 2.下列說(shuō)法錯(cuò)誤的是( C ) A.等邊三角形是等腰三角形 B.一個(gè)外角的平分線(xiàn)平行于一邊的三角形是等腰三角形 C.有兩個(gè)內(nèi)角不相等的三角形不是等腰三角形 D.有兩個(gè)內(nèi)角分別是70°和40°的三角形是等腰三角形

29、3.△ABC中,AB=AC,∠A=∠C,則∠B=60°. 4.在△ABC中,∠B=∠C=15°,AB=2 cm,CD⊥AB交BA的延長(zhǎng)線(xiàn)于點(diǎn)D,則CD的長(zhǎng)度是1 cm. 5.如圖所示,P、Q是△ABC邊BC上的兩點(diǎn),且BP=PQ=QC=AP=AQ,求∠BAC的度數(shù). 解:∵PA=PQ=AQ,∴△APQ是等邊三角形,∴∠APQ=∠PQA=∠QAP=60°.∵PA=PB,∴∠B=∠PAB.又∵∠B+∠PAB=∠APQ=60°,∴∠PBA=∠PAB=30°.同理,∠QAC=30°,∴∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°. 活動(dòng)3 拓展延伸(學(xué)生對(duì)學(xué))

30、 【例3】如圖,在△EBD中,EB=ED,點(diǎn)C在BD上,CE=CD,BE⊥CE,A是CE延長(zhǎng)線(xiàn)上一點(diǎn),AB=BC.試判斷△ABC的形狀,并證明你的結(jié)論. 【互動(dòng)探索】由CE=CD,EB=ED,根據(jù)“等邊對(duì)等角”及三角形外角性質(zhì),可得∠CBE=∠ECB.再由BE⊥CE,根據(jù)三角形內(nèi)角和定理,可得∠ECB=60°.又∵AB=BC,從而得出△ABC是等邊三角形. 【解答】△ABC是等邊三角形.證明如下: ∵CE=CD,∴∠CED=∠D. 又∵∠ECB=∠CED+∠D, ∴∠ECB=2∠D. ∵BE=DE,∴∠CBE=∠D, ∴∠ECB=2∠CBE,∴∠CBE=∠ECB. ∵BE⊥

31、CE,∴∠CEB=90°. 又∵∠ECB+∠CBE+∠CEB=180°, ∴∠ECB+∠ECB+90°=180°, ∴∠ECB=60°. 又∵AB=BC,∴△ABC是等邊三角形. 【互動(dòng)總結(jié)】(學(xué)生總結(jié),老師點(diǎn)評(píng))(1)已知一個(gè)三角形中兩邊相等,要證明這個(gè)三角形是等邊三角形,有兩種方法:①證明另一邊也與這兩邊相等;②證明這個(gè)三角形中有一個(gè)角等于60°.(2)已知一個(gè)三角形中有一個(gè)角等于60°,要證明這個(gè)三角形是等邊三角形,有兩種方法:①證明另外兩個(gè)角也等于60°;②證明這個(gè)三角形中有兩邊相等. 環(huán)節(jié)3 課堂小結(jié),當(dāng)堂達(dá)標(biāo) (學(xué)生總結(jié),老師點(diǎn)評(píng)) 1.等邊三角形的判定定理: 2.含30°角的直角三角形的性質(zhì)定理:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半. 練習(xí)設(shè)計(jì) 請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)!

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!