2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 理 新人教A版

上傳人:xt****7 文檔編號:105270472 上傳時間:2022-06-11 格式:DOC 頁數(shù):5 大小:47.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 理 新人教A版_第1頁
第1頁 / 共5頁
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 理 新人教A版_第2頁
第2頁 / 共5頁
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 理 新人教A版_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 理 新人教A版(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 理 新人教A版 一、選擇題 1. cos=(  ) A. B. C.- D.- 解析 cos=cos=cos=cos=-cos=-,故選C. 答案 C 2.已知tan θ=2,則sin2θ+sin θcos θ-2cos2θ= (  ). A.- B. C.- D. 解析 由于tan θ=2,則sin2θ+sin θcos θ-2cos2θ====. 答案 D 3.若=,則tan 2

2、α= (  ). A.- B. C.- D. 解析 由=,得=,所以tan α=-3,所以tan 2α==. 答案 B 4.已知f(cos x)=cos 3x,則f(sin 30°)的值為(  ). A.0 B.1 C.-1 D. 解析 ∵f(cos x)=cos 3x, ∴f(sin 30°)=f(cos 60°)=cos 180°=-1. 答案 C 5.若sin θ,cos θ是方程4x2+2mx+m=0的兩根,則m的值為(  ). A.1+

3、 B.1- C.1± D.-1- 解析 由題意知:sin θ+cos θ=-,sin θcos θ=, 又(sin θ+cos θ)2=1+2sin θcos θ, ∴=1+, 解得:m=1±,又Δ=4m2-16m≥0, ∴m≤0或m≥4,∴m=1-. 答案 B 6.若Sn=sin +sin +…+sin (n∈N*),則在S1,S2,…,S100中,正數(shù)的個數(shù)是 (  ). A.16 B.72 C.86 D.100 解析 由sin =-s

4、in ,sin =-sin ,…,sin =-sin ,sin =sin =0,所以S13=S14=0. 同理S27=S28=S41=S42=S55=S56=S69=S70=S83=S84=S97=S98=0,共14個,所以在S1,S2,…,S100中,其余各項均大于0,個數(shù)是100-14=86(個).故選C. 答案 C 二、填空題 7.已知cosα=-,且α是第二象限的角,則tan(2π-α)=________. 解析 由α是第二象限的角,得sinα==,tanα==-,則tan(2π-α)=-tanα=. 答案 8.已知α為第二象限角,則cos α+sin α=___

5、_____. 解析 原式=cos α+sin α =cos α+sin α =cos α+sin α=0. 答案 0 9.已知sin α=+cos α,且α∈,則的值為________. 解析 依題意得sin α-cos α=,又(sin α+cos α)2+(sin α-cos α)2=2,即(sin α+cos α)2+2=2,故(sin α+cos α)2=;又α∈,因此有sin α+cos α=,所以==-(sin α+cos α)=-. 答案?。? 10. f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均為非零實數(shù)),若f(2 012)=6,

6、則f(2 013)=________. 解析 f(2 012)=asin(2 012π+α)+bcos(2 012π+β)+4=asin α+bcos β+4=6,∴asin α+bcos β=2,∴f(2 013)=asin(2 013π+α)+bcos(2 013π+β)+4=-asin α-bcos β+4=2. 答案 2 三、解答題 11.已知=3+2, 求cos2(π-α)+sin ·cos +2sin2(α-π)的值. 解析 由已知得=3+2, ∴tan α===. ∴cos2(π-α)+sin cos +2sin2(α-π) =cos2α+(-cos α)(-

7、sin α)+2sin2α =cos2α+sin αcos α+2sin2α = = ==. 12.已知sin(3π+α)=2sin,求下列各式的值: (1);(2)sin2α+sin 2α. 解 法一 由sin(3π+α)=2sin,得tan α=2. (1)原式===-. (2)原式=sin2α+2sin αcos α= ==. 法二 由已知得sin α=2cos α. (1)原式==-. (2)原式===. 13.是否存在α∈,β∈(0,π),使等式sin(3π-α)=cos,cos(-α)=-cos(π+β)同時成立?若存在,求出α,β的值;若不存在,請說明

8、理由. 解 假設(shè)存在角α,β滿足條件, 則由已知條件可得 由①2+②2,得sin2α+3cos2α=2. ∴sin2α=,∴sin α=±.∵α∈,∴α=±. 當(dāng)α=時,由②式知cos β=, 又β∈(0,π),∴β=,此時①式成立; 當(dāng)α=-時,由②式知cos β=, 又β∈(0,π),∴β=,此時①式不成立,故舍去. ∴存在α=,β=滿足條件. 14.已知函數(shù)f(x)=tan. (1)求f(x)的定義域與最小正周期; (2)設(shè)α∈,若f=2cos 2α,求α的大?。? 解 (1)由2x+≠+kπ,k∈Z,得x≠+,k∈Z.所以f(x)的定義域為,f(x)的最小正周期為. (2)由f=2cos 2α,得tan=2cos 2α, =2(cos2α-sin2α), 整理得=2(cos α+sin α)(cos α-sin α). 因為α∈,所以sin α+cos α≠0. 因此(cos α-sin α)2=,即sin 2α=. 由α∈,得2α∈.所以2α=,即α=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!