《2022年高中數(shù)學(xué)《合情推理-歸納推理》教案 蘇教版選修1-2》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué)《合情推理-歸納推理》教案 蘇教版選修1-2(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué)《合情推理-歸納推理》教案 蘇教版選修1-2
課時(shí)安排:一課時(shí)
課型:新授課
教學(xué)目標(biāo):
1、通過(guò)對(duì)已學(xué)知識(shí)的回顧,進(jìn)一步體會(huì)合情推理這種基本的分析問(wèn)題法,認(rèn)識(shí)歸納推理的基本方法與步驟,并把它們用于對(duì)問(wèn)題的發(fā)現(xiàn)與解決中去。
2.歸納推理是從特殊到一般的推理方法,通常歸納的個(gè)體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會(huì)越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法。
教學(xué)重點(diǎn):了解合情推理的含義,能利用歸納進(jìn)行簡(jiǎn)單的推理。
教學(xué)難點(diǎn):用歸納進(jìn)行推理,做出猜想。
教學(xué)過(guò)程:
一、課堂引入:
從一個(gè)或幾個(gè)已知命題得出另一個(gè)新命題的思維過(guò)程稱(chēng)為推理。
見(jiàn)書(shū)上的三
2、個(gè)推理案例,回答幾個(gè)推理各有什么特點(diǎn)?都是由“前提”和“結(jié)論”兩部分組成,但是推理的結(jié)構(gòu)形式上表現(xiàn)出不同的特點(diǎn),據(jù)此可分為合情推理與演繹推理
二、新課講解:
1、 蛇是用肺呼吸的,鱷魚(yú)是用肺呼吸的,海龜是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鱷魚(yú),海龜,蜥蜴都是爬行動(dòng)物,所有的爬行動(dòng)物都是用肺呼吸的。
2、 三角形的內(nèi)角和是,凸四邊形的內(nèi)角和是,凸五邊形的內(nèi)角和是
由此我們猜想:凸邊形的內(nèi)角和是
3、,由此我們猜想:(均為正實(shí)數(shù))
這種由某類(lèi)事物的部分對(duì)象具有某些特征,推出該類(lèi)事物的全部對(duì)象都具有這些特征的推理,或者由個(gè)別事實(shí)概栝出一般結(jié)論的推理,稱(chēng)為歸納推理.(簡(jiǎn)稱(chēng):歸納)
歸
3、納推理的一般步驟:
⑴ 對(duì)有限的資料進(jìn)行觀察、分析、歸納 整理;
⑵ 提出帶有規(guī)律性的結(jié)論,即猜想;
⑶ 檢驗(yàn)猜想。
實(shí)驗(yàn),觀察
概括,推廣
猜測(cè)一般性結(jié)論
三、例題講解:
例1已知數(shù)列的通項(xiàng)公式,,試通過(guò)計(jì)算的值,推測(cè)出的值。
【學(xué)生討論:】(學(xué)生討論結(jié)果預(yù)測(cè)如下)
(1)
由此猜想,
學(xué)生討論:1)哥德巴赫猜想:任何大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的之和。
2)三根針上有若干個(gè)金屬片的問(wèn)題。
四、鞏固練習(xí):
1、已知,經(jīng)計(jì)算: ,推測(cè)當(dāng)時(shí),有__________________________.
2、已知:
4、,。
觀察上述兩等式的規(guī)律,請(qǐng)你寫(xiě)出一般性的命題,并證明之。
3、觀察(1)
(2)。
由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論。
注:歸納推理的幾個(gè)特點(diǎn):
1.歸納是依據(jù)特殊現(xiàn)象推斷一般現(xiàn)象,因而,由歸納所得的結(jié)論超越了前提所包容的范圍.
2.歸納是依據(jù)若干已知的、沒(méi)有窮盡的現(xiàn)象推斷尚屬未知的現(xiàn)象,因而結(jié)論具有猜測(cè)性.
3.歸納的前提是特殊的情況,因而歸納是立足于觀察、經(jīng)驗(yàn)和實(shí)驗(yàn)的基礎(chǔ)之上.
歸納是立足于觀察、經(jīng)驗(yàn)、實(shí)驗(yàn)和對(duì)有限資料分析的基礎(chǔ)上.提出帶有規(guī)律性的結(jié)論.
五、 教學(xué)小結(jié):
1.歸納推理是由部分到整體,從特殊到一般的推理。通常歸納的個(gè)體數(shù)目越多,越具有代
5、表性,那么推廣的一般性命題也會(huì)越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法。
2.歸納推理的一般步驟:1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同的性質(zhì)。
2)從已知的相同性質(zhì)中推出一個(gè)明確表述的一般命題(猜想)。
六、作業(yè):
七、教后感:
課題:合情推理(二)——類(lèi)比推理
課時(shí)安排:一課時(shí)
課型:新授課
教學(xué)目標(biāo):
1、通過(guò)對(duì)已學(xué)知識(shí)的回顧,進(jìn)一步體會(huì)合情推理這種基本的分析問(wèn)題法,認(rèn)識(shí)類(lèi)比推理的基本方法與步驟,并把它們用于對(duì)問(wèn)題的發(fā)現(xiàn)與解決中去。
2、類(lèi)比推理是從特殊到特殊的推理,是尋找事物之間的共同或相似性質(zhì),類(lèi)比的性質(zhì)相似性越多,相似的性質(zhì)與推測(cè)的性質(zhì)之間的關(guān)系就越相關(guān),
6、從而類(lèi)比得出的結(jié)論就越可靠。
教學(xué)重點(diǎn):了解合情推理的含義,能利用類(lèi)比進(jìn)行簡(jiǎn)單的推理。
教學(xué)難點(diǎn):用類(lèi)比進(jìn)行推理,做出猜想。
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1、什么叫推理?推理由哪幾部分組成?
2、合情推理的主要形式有 和 .
3、歸納推理是從 事實(shí)中概括出 結(jié)論的一種推理模式
4、歸納推理的特點(diǎn):
5、 (均為實(shí)數(shù)),
請(qǐng)推測(cè)= = 。
二、新課講解:
春秋時(shí)代魯國(guó)的公輸班(后人稱(chēng)魯班,被認(rèn)為是木匠業(yè)的祖師)一次去林中砍樹(shù)時(shí)被一株齒形的茅草割破了手,這
7、樁倒霉事卻使他發(fā)明了鋸子.
他的思路是這樣的:茅草是齒形的,茅草能割破手,需要一種能割斷木頭的,它也可以是齒形的。這個(gè)推理過(guò)程是歸納推理嗎?
例1、試根據(jù)等式的性質(zhì)猜想不等式的性質(zhì)。
等式的性質(zhì): 猜想不等式的性質(zhì):
(1) a=bTa+c=b+c; (1) a>bTa+c>b+c
(2) a=bT ac=bc; (2) a>bT ac>bc;
(3) a=bTa2=b2;等等 (3) a>bTa2>b2;等等。
問(wèn):這樣
8、猜想出的結(jié)論是否一定正確?
二、新課講解:
由兩個(gè)(兩類(lèi))對(duì)象之間在某些方面的相似或相同,推演出他們?cè)谄渌矫嬉蚕嗨苹蛳嗤换蚱渲幸活?lèi)對(duì)象的某些已知特征,推出另一類(lèi)對(duì)象也具有這些特征的推理稱(chēng)為類(lèi)比推理(簡(jiǎn)稱(chēng)類(lèi)比).簡(jiǎn)言之,類(lèi)比推理是由特殊到特殊的推理.
類(lèi)比推理的一般步驟:
⑴ 找出兩類(lèi)對(duì)象之間可以確切表述的相似特征;
⑵ 用一類(lèi)對(duì)象的已知特征去推測(cè)另一類(lèi)對(duì)象的特征,從而得出一個(gè)猜想;
⑶ 檢驗(yàn)猜想。即
觀察,比較
聯(lián)想,類(lèi)推
猜測(cè)新的結(jié)論
例2、試將平面上的圓與空間的球進(jìn)行類(lèi)比.
圓的定義:平面內(nèi)到一個(gè)定點(diǎn)的距離等于定長(zhǎng)的
9、點(diǎn)的集合.
球的定義:到一個(gè)定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合.
圓 截面圓
弦 大圓
直徑周長(zhǎng) 表面積
圓面積 球體積
圓的性質(zhì)
球的性質(zhì)
圓心與弦(不是直徑)的中點(diǎn)的連線垂直于弦
球心與截面圓(不是大圓)的圓點(diǎn)的連線垂直于截面圓
與圓心距離相等的兩弦相等;與圓心距離不等的兩弦不等,距圓心較近的
10、弦較長(zhǎng)
與球心距離相等的兩截面圓相等;與球心距離不等的兩截面圓不等,距球心較近的截面圓較大
圓的切線垂直于過(guò)切點(diǎn)的半徑;經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
球的切面垂直于過(guò)切點(diǎn)的半徑;經(jīng)過(guò)球心且垂直于切面的直線必經(jīng)過(guò)切點(diǎn)
經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
經(jīng)過(guò)切點(diǎn)且垂直于切面的直線必經(jīng)過(guò)球心
三、鞏固練習(xí):
1、類(lèi)比平面內(nèi)直角三角形的勾股定理,試給出空間中四面體性質(zhì)的猜想.
2、若數(shù)列為等差數(shù)列,且,則。現(xiàn)已知數(shù)列為等比數(shù)列,且,類(lèi)比以上結(jié)論,可得到什么結(jié)論?你能說(shuō)明結(jié)論的正確性嗎?
四、教學(xué)小結(jié):
1、類(lèi)比推理是從特殊到特殊的推理,是尋找事物之間的共同或相似性質(zhì)。類(lèi)比的性質(zhì)相似性越多,相似的性質(zhì)與推測(cè)的性質(zhì)之間的關(guān)系就越相關(guān),從而類(lèi)比得出的結(jié)論就越可靠。
2、類(lèi)比推理的一般步驟:
a) 找出兩類(lèi)事物之間的相似性或者一致性。
b) 用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想)。
五、作業(yè):
六、教后感
gkxx