《中考數(shù)學(xué) 考前小題狂做 專(zhuān)題12 反比例函數(shù)(含解析)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《中考數(shù)學(xué) 考前小題狂做 專(zhuān)題12 反比例函數(shù)(含解析)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、中考數(shù)學(xué) 考前小題狂做 專(zhuān)題12 反比例函數(shù)(含解析)
1.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函數(shù)y=上的三點(diǎn),若x1<x2<x3,y2<y1<y3,則下列關(guān)系式不正確的是( ?。?
A.x1?x2<0 B.x1?x3<0 C.x2?x3<0 D.x1+x2<0
2. 如圖,將邊長(zhǎng)為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A,B重合),作CD⊥OB于點(diǎn)D,若點(diǎn)C,D都在雙曲線(xiàn)y=上(k>0,x>0),則k的值為( ?。?
A.25B.18C.9D.9
3. 已知A(x1,y1),B(x2,y2)是反比例函數(shù)y=(k
2、≠0)圖象上的兩個(gè)點(diǎn),當(dāng)x1<x2<0時(shí),y1>y2,那么一次函數(shù)y=kx﹣k的圖象不經(jīng)過(guò)( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4. 位于第一象限的點(diǎn)E在反比例函數(shù)y=的圖象上,點(diǎn)F在x軸的正半軸上,O是坐標(biāo)原點(diǎn).若EO=EF,△EOF的面積等于2,則k=( ?。?
A.4 B.2 C.1 D.﹣2
5. 下列說(shuō)法中不正確的是( ?。?
A.函數(shù)y=2x的圖象經(jīng)過(guò)原點(diǎn)
B.函數(shù)y=的圖象位于第一、三象限
C.函數(shù)y=3x﹣1的圖象不經(jīng)過(guò)第二象限
D.函數(shù)y=﹣的值隨x的值的增大而增大
6. 如圖5,在反比例函數(shù)的圖象上有一動(dòng)點(diǎn),連接并延長(zhǎng)交圖象的另一支
3、于點(diǎn),在第一象限內(nèi)有一點(diǎn),滿(mǎn)足,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)始終在函數(shù)的
圖象上運(yùn)動(dòng),若,則的值為
7. 二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數(shù)與一次函數(shù)y=bx﹣c在同一坐標(biāo)系內(nèi)的圖象大致是( )
A. B. C. D.
8. 函數(shù)y=的圖象可能是( ?。?
A. B. C. D.
9. 如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,4)、Q(m,n)在函數(shù)y=(x>0)的圖象上,當(dāng)m>1時(shí),過(guò)點(diǎn)P分別作x軸、y軸的垂線(xiàn),垂足為點(diǎn)A,B;過(guò)點(diǎn)Q分別作x軸、y軸的垂線(xiàn),垂足為點(diǎn)C、D.QD交PA于點(diǎn)E,隨著m的增大,四
4、邊形ACQE的面積( ?。?
A.減小 B.增大 C.先減小后增大 D.先增大后減小
10. “科學(xué)用眼,保護(hù)視力”是青少年珍愛(ài)生命的具體表現(xiàn).科學(xué)證實(shí):近視眼鏡的度數(shù)y(度)與鏡片焦距x(m)成反比例.如果500度近視眼鏡片的焦距為0.2m,則表示y與x函數(shù)關(guān)系的圖象大致是( ?。?
A.B.
C.D.
參考答案
1.【考點(diǎn)】反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
【分析】根據(jù)反比例函數(shù)y=和x1<x2<x3,y2<y1<y3,可得點(diǎn)A,B在第三象限,點(diǎn)C在第一象限,得出x1<x2<0<x3,再選擇即可.
【解答】解:∵反比例函數(shù)y=中,2>0,
∴在每一象限內(nèi),y隨x的增大而減
5、小,
∵x1<x2<x3,y2<y1<y3,
∴點(diǎn)A,B在第三象限,點(diǎn)C在第一象限,
∴x1<x2<0<x3,
∴x1?x2<0,
故選A.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答此題的關(guān)鍵是熟知反比例函數(shù)的增減性,本題是逆用,難度有點(diǎn)大.
2.【考點(diǎn)】反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;平行線(xiàn)的性質(zhì);等邊三角形的性質(zhì).
【分析】過(guò)點(diǎn)A作AE⊥OB于點(diǎn)E,根據(jù)正三角形的性質(zhì)以及三角形的邊長(zhǎng)可找出點(diǎn)A、B、E的坐標(biāo),再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令該比例=n,根據(jù)比例關(guān)系找出點(diǎn)D、C的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出關(guān)于k、n的二元一次
6、方程組,解方程組即可得出結(jié)論.
【解答】解:過(guò)點(diǎn)A作AE⊥OB于點(diǎn)E,如圖所示.
∵△OAB為邊長(zhǎng)為10的正三角形,
∴點(diǎn)A的坐標(biāo)為(10,0)、點(diǎn)B的坐標(biāo)為(5,5),點(diǎn)E的坐標(biāo)為(,).
∵CD⊥OB,AE⊥OB,
∴CD∥AE,
∴.
設(shè)=n(0<n<1),
∴點(diǎn)D的坐標(biāo)為(,),點(diǎn)C的坐標(biāo)為(5+5n,5﹣5n).
∵點(diǎn)C、D均在反比例函數(shù)y=圖象上,
∴,解得:.
故選C.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、平行線(xiàn)的性質(zhì)以及等邊三角形的性質(zhì),解題的關(guān)鍵是找出點(diǎn)D、C的坐標(biāo).本題屬于中檔題,稍顯繁瑣,解決該題型題目時(shí),巧妙的借助了比例來(lái)表示點(diǎn)的
7、坐標(biāo),根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出方程組是關(guān)鍵.
3.【考點(diǎn)】反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;一次函數(shù)圖象與系數(shù)的關(guān)系.
【分析】首先根據(jù)x1<x2<0時(shí),y1>y2,確定反比例函數(shù)y=(k≠0)中k的符號(hào),然后再確定一次函數(shù)y=kx﹣k的圖象所在象限.
【解答】解:∵當(dāng)x1<x2<0時(shí),y1>y2,
∴k>0,
∴﹣k<0,
∴一次函數(shù)y=kx﹣k的圖象經(jīng)過(guò)第一、三、四象限,
∴不經(jīng)過(guò)第二象限,
故選:B.
【點(diǎn)評(píng)】此題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及一次函數(shù)圖象與系數(shù)的關(guān)系,解決此題的關(guān)鍵是確定k的符號(hào).
4.【考點(diǎn)】反比例函數(shù)系數(shù)k的幾何意義.
【分
8、析】此題應(yīng)先由三角形的面積公式,再求解k即可.
【解答】解:因?yàn)槲挥诘谝幌笙薜狞c(diǎn)E在反比例函數(shù)y=的圖象上,點(diǎn)F在x軸的正半軸上,O是坐標(biāo)原點(diǎn).若EO=EF,△EOF的面積等于2,
所以,
解得:xy=2,
所以:k=2,
故選:B
【點(diǎn)評(píng)】主要考查了反比例函數(shù)系數(shù)k的幾何意義問(wèn)題,關(guān)鍵是由三角形的面積公式,再求解k.
5.【考點(diǎn)】正比例函數(shù)的性質(zhì);一次函數(shù)的性質(zhì);反比例函數(shù)的性質(zhì).
【分析】分別利用正比例函數(shù)以及反比例函數(shù)的定義分析得出答案.
【解答】解:A、函數(shù)y=2x的圖象經(jīng)過(guò)原點(diǎn),正確,不合題意;
B、函數(shù)y=的圖象位于第一、三象限,正確,不合題意;
C、函數(shù)y=
9、3x﹣1的圖象不經(jīng)過(guò)第二象限,正確,不合題意;
D、函數(shù)y=﹣的值,在每個(gè)象限內(nèi),y隨x的值的增大而增大,故錯(cuò)誤,符合題意.
故選:D.
6.答案:D
解析:連結(jié)CO,由雙曲線(xiàn)關(guān)于原點(diǎn)對(duì)稱(chēng),知AO=BO,又CA=CB,
所以,CO⊥AB,因?yàn)?,所以,?
作AE⊥x軸,CD⊥x軸于E、D點(diǎn)。
則有△OCD∽△OEA,所以,=
設(shè)C(m,n),則有A(-),
所以,①, ?、?
解①②得:k=8
7.【考點(diǎn)】反比例函數(shù)的圖象;一次函數(shù)的圖象;二次函數(shù)的圖象.
【分析】根據(jù)二次函數(shù)的圖象找出a、b、c的正負(fù),再結(jié)合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關(guān)系即可得出結(jié)論.
10、
【解答】解:觀(guān)察二次函數(shù)圖象可知:
開(kāi)口向上,a>0;對(duì)稱(chēng)軸大于0,﹣>0,b<0;二次函數(shù)圖象與y軸交點(diǎn)在y軸的正半軸,c>0.
∵反比例函數(shù)中k=﹣a<0,
∴反比例函數(shù)圖象在第二、四象限內(nèi);
∵一次函數(shù)y=bx﹣c中,b<0,﹣c<0,
∴一次函數(shù)圖象經(jīng)過(guò)第二、三、四象限.
故選C.
8. 【考點(diǎn)】反比例函數(shù)的圖象.
【分析】函數(shù)y=是反比例y=的圖象向左移動(dòng)一個(gè)單位,根據(jù)反比例函數(shù)的圖象特點(diǎn)判斷即可.
【解答】解:函數(shù)y=是反比例y=的圖象向左移動(dòng)一個(gè)單位,
即函數(shù)y=是圖象是反比例y=的圖象雙曲線(xiàn)向左移動(dòng)一個(gè)單位.
故選C
【點(diǎn)評(píng)】此題是反比例函數(shù)的圖象,
11、主要考查了反比例函數(shù)的圖象是雙曲線(xiàn),掌握函數(shù)圖象的平移是解本題的關(guān)鍵.
9.【考點(diǎn)】反比例函數(shù)系數(shù)k的幾何意義.
【分析】首先利用m和n表示出AC和AQ的長(zhǎng),則四邊形ACQE的面積即可利用m、n表示,然后根據(jù)函數(shù)的性質(zhì)判斷.
【解答】解:AC=m﹣1,CQ=n,
則S四邊形ACQE=AC?CQ=(m﹣1)n=mn﹣n.
∵P(1,4)、Q(m,n)在函數(shù)y=(x>0)的圖象上,
∴mn=k=4(常數(shù)).
∴S四邊形ACQE=AC?CQ=4﹣n,
∵當(dāng)m>1時(shí),n隨m的增大而減小,
∴S四邊形ACQE=4﹣n隨m的增大而增大.
故選B.
【點(diǎn)評(píng)】本題考查了二次函數(shù)的性質(zhì)以及矩形的面積的計(jì)算,利用n表示出四邊形ACQE的面積是關(guān)鍵.
10. 【考點(diǎn)】函數(shù)的圖象.
【分析】由于近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)成反比例,可設(shè)y=,由于點(diǎn)(0.2,500)在此函數(shù)解析式上,故可先求得k的值.
【解答】解:根據(jù)題意近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)成反比例,設(shè)y=,
由于點(diǎn)(0.2,500)在此函數(shù)解析式上,
∴k=0.2×500=100,
∴y=.
故選:B.
【點(diǎn)評(píng)】考查了根據(jù)實(shí)際問(wèn)題列反比例函數(shù)關(guān)系式的知識(shí),解答該類(lèi)問(wèn)題的關(guān)鍵是確定兩個(gè)變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式.