(浙江專用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù) 8 第8講 函數(shù)與方程教學(xué)案
《(浙江專用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù) 8 第8講 函數(shù)與方程教學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù) 8 第8講 函數(shù)與方程教學(xué)案(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第8講 函數(shù)與方程 1.函數(shù)的零點(diǎn) (1)函數(shù)零點(diǎn)的定義:對(duì)于函數(shù)y=f(x),把使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn). (2)三個(gè)等價(jià)關(guān)系:方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn). 2.函數(shù)零點(diǎn)的判定 如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是f(x)=0的根.我們把這一結(jié)論稱為函數(shù)零點(diǎn)存在性定理. 3.二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系
2、 Δ>0 Δ=0 Δ<0 二次函數(shù) y=ax2+ bx+c(a>0) 的圖象 與x軸 的交點(diǎn) (x1,0),(x2,0) (x1,0) 無(wú)交點(diǎn) 零點(diǎn)個(gè)數(shù) 兩個(gè) 一個(gè) 零個(gè) [疑誤辨析] 判斷正誤(正確的打“√”,錯(cuò)誤的打“×”) (1)函數(shù)的零點(diǎn)就是函數(shù)的圖象與x軸的交點(diǎn).( ) (2)函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn)(函數(shù)圖象連續(xù)不斷),則f(a)·f(b)<0.( ) (3)二次函數(shù)y=ax2+bx+c(a≠0)在b2-4ac<0時(shí)沒(méi)有零點(diǎn).( ) (4)若函數(shù)f(x)在(a,b)上連續(xù)單調(diào)且f(a)·f(b)<0,則
3、函數(shù)f(x)在[a,b]上有且只有一個(gè)零點(diǎn).( ) 答案:(1)× (2)× (3)√ (4)√ [教材衍化] 1.(必修1P92A組T5改編)函數(shù)f(x)=ln x-的零點(diǎn)所在的大致范圍是( ) A.(1,2) B.(2,3) C.和(3,4) D.(4,+∞) 解析:選B.易知f(x)為增函數(shù),由f(2)=ln 2-1<0,f(3)=ln 3->0,得f(2)·f(3)<0.故選B. 2.(必修1P88例1改編)函數(shù)f(x)=ex+3x的零點(diǎn)個(gè)數(shù)是______. 解析:由已知得f′(x)=ex+3>0,所以f(x)在R上單調(diào)遞增,又f(-1)=-3<0,f(0)
4、=1>0,因此函數(shù)f(x)有且只有一個(gè)零點(diǎn). 答案:1 [易錯(cuò)糾偏] (1)錯(cuò)用零點(diǎn)存在性定理; (2)誤解函數(shù)零點(diǎn)的定義; (3)忽略限制條件; (4)錯(cuò)用二次函數(shù)在R上無(wú)零點(diǎn)的條件. 1.函數(shù)f(x)=x+的零點(diǎn)個(gè)數(shù)是______. 解析:函數(shù)的定義域?yàn)閧x|x≠0},當(dāng)x>0時(shí),f(x)>0,當(dāng)x<0時(shí),f(x)<0,所以函數(shù)沒(méi)有零點(diǎn). 答案:0 2.函數(shù)f(x)=x2-3x的零點(diǎn)是______. 解析:由f(x)=0,得x2-3x=0, 即x=0和x=3. 答案:0和3 3.若二次函數(shù)f(x)=x2-2x+m在區(qū)間(0,4)上存在零點(diǎn),則實(shí)數(shù)m的取值范圍是_
5、_____.
解析:二次函數(shù)f(x)圖象的對(duì)稱軸方程為x=1.若在區(qū)間(0,4)上存在零點(diǎn),只需f(1)≤0且f(4)>0即可,即-1+m≤0且8+m>0,解得-8 6、e,3)
【解析】 h(x)=f(x)-g(x)的零點(diǎn)等價(jià)于方程f(x)-g(x)=0的根,
即為函數(shù)y=f(x)與y=g(x)圖象的交點(diǎn)的橫坐標(biāo),其大致圖象如圖,從圖象可知它們僅有一個(gè)交點(diǎn)A,橫坐標(biāo)的范圍為(0,1),故選A.
【答案】 A
判斷函數(shù)零點(diǎn)所在區(qū)間的3種方法
(1)解方程法:當(dāng)對(duì)應(yīng)方程f(x)=0易解時(shí),可先解方程,然后再看求得的根是否落在給定區(qū)間上.
(2)定理法:利用函數(shù)零點(diǎn)的存在性定理,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù),再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn).
(3)圖象法:通過(guò)畫(huà)函數(shù)圖 7、象,觀察圖象與x軸在給定區(qū)間上是否有交點(diǎn)來(lái)判斷.
1.(2020·金華十校聯(lián)考)函數(shù)f(x)=πx+log2x的零點(diǎn)所在區(qū)間為( )
A. B.
C. D.
解析:選A.因?yàn)閒=+log2<0,
f=+log2>0,所以f·f<0,故函數(shù)f(x)=πx+log2x的零點(diǎn)所在區(qū)間為.
2.(2020·杭州市嚴(yán)州中學(xué)高三模擬)若a
8、(c,+∞)內(nèi)
解析:選A.因?yàn)閒(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a),
所以f(a)=(a-b)(a-c),
f(b)=(b-c)(b-a),
f(c)=(c-a)(c-b),
因?yàn)閍0,f(b)<0,f(c)>0,
所以f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(a,b)和(b,c)內(nèi).
函數(shù)零點(diǎn)個(gè)數(shù)的問(wèn)題
(1)函數(shù)f(x)=的零點(diǎn)個(gè)數(shù)為( )
A.3 B.2
C.1 D.0
(2)已知函數(shù)f(x)滿足f(x)=f(3x),且當(dāng)x∈[1,3)時(shí),f(x)=ln x,若在 9、區(qū)間[1,9)內(nèi),函數(shù)g(x)=f(x)-ax有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. B.
C. D.
【解析】 (1)法一:由f(x)=0得
或解得x=-2或x=e.
因此函數(shù)f(x)共有2個(gè)零點(diǎn).
法二:函數(shù)f(x)的圖象如圖所示,
由圖象知函數(shù)f(x)共有2個(gè)零點(diǎn).
(2)因?yàn)閒(x)=f(3x)?f(x)=f,當(dāng)x∈[3,9)時(shí),f(x)=f=ln,所以f(x)=而g(x)=f(x)-ax有三個(gè)不同零點(diǎn)?y=f(x)與y=ax的圖象有三個(gè)不同交點(diǎn),如圖所示,可得直線y=ax應(yīng)在圖中兩條虛線之間,所以可解得
10、B (2)B
判斷函數(shù)零點(diǎn)個(gè)數(shù)的3種方法
(1)方程法:令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn).
(2)零點(diǎn)存在性定理法:利用定理不僅要求函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、對(duì)稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)或零點(diǎn)值所具有的性質(zhì).
(3)數(shù)形結(jié)合法:轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問(wèn)題.先畫(huà)出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的橫坐標(biāo)有幾個(gè)不同的值,就有幾個(gè)不同的零點(diǎn).
1.函數(shù)f(x)=|x-2|-ln x在定義域內(nèi)的零點(diǎn)的個(gè)數(shù)為( )
A.0 B.1 11、
C.2 D.3
解析:選C.由題意可知f(x)的定義域?yàn)?0,+∞),在同一直角坐標(biāo)系中畫(huà)出函數(shù)y1=|x-2|(x>0),y2=ln x(x>0)的圖象,如圖所示.
由圖可知函數(shù)f(x)在定義域內(nèi)的零點(diǎn)個(gè)數(shù)為2.
2.已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時(shí),f(x)=則函數(shù)g(x)=4f(x)-1的零點(diǎn)個(gè)數(shù)為( )
A.4 B.6
C.8 D.10
解析:選D.由f(x)為偶函數(shù)可得,只需作出x∈(0,+∞)上的圖象,再利用對(duì)稱性作另一半圖象即可.當(dāng)x∈(0,2]時(shí),可以通過(guò)y=2x的圖象進(jìn)行變換作出f(x)的圖象,當(dāng)x>2 12、時(shí),f(x)=f(x-2),即自變量差2個(gè)單位,函數(shù)值折半,進(jìn)而可作出f(x)在(2,4],(4,6],…的圖象,如圖所示.g(x)的零點(diǎn)個(gè)數(shù)即f(x)=的根的個(gè)數(shù),也即f(x)的圖象與y=的圖象的交點(diǎn)個(gè)數(shù),觀察圖象可知,當(dāng)x>0時(shí),有5個(gè)交點(diǎn),根據(jù)對(duì)稱性可得當(dāng)x<0時(shí),也有5個(gè)交點(diǎn),共計(jì)10個(gè)交點(diǎn),故選D.
函數(shù)零點(diǎn)的應(yīng)用(高頻考點(diǎn))
高考對(duì)函數(shù)零點(diǎn)的考查多以選擇題或填空題的形式出現(xiàn).主要命題角度有:
(1)利用函數(shù)零點(diǎn)比較大小;
(2)已知函數(shù)的零點(diǎn)(或方程的根)的情況求參數(shù)的值或范圍;
(3)利用函數(shù)零點(diǎn)的性質(zhì)求參數(shù)的范圍.
角度一 利用函數(shù)零點(diǎn)比較大小
13、(2020·臺(tái)州模擬)已知e是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=ex+x-2的零點(diǎn)為a,函數(shù)g(x)=ln x+x-2的零點(diǎn)為b,則下列不等式中成立的是( )
A.f(a) 14、(1)=ln 1+1-2=-1<0,g(2)=ln 2+2-2=ln 2>0,所以函數(shù)g(x)的零點(diǎn)b∈(1,2).
綜上,可得0
15、__.若函數(shù)f(x)恰有2個(gè)零點(diǎn),則λ的取值范圍是________.
【解析】 (1)令F(x)=0,即g(x)-f(x)-m=0.
所以m=g(x)-f(x)=log2(2x-1)-log2(2x+1)
=log2 =log2.
因?yàn)?≤x≤2,所以3≤2x+1≤5.
所以≤≤,≤1-≤.
所以log2 ≤log2≤log2 ,
即log2 ≤m≤log2 .
所以m的取值范圍是.
(2)若λ=2,則當(dāng)x≥2時(shí),令x-4<0,得2≤x<4;當(dāng)x<2時(shí),令x2-4x+3<0,得1 16、;令x2-4x+3=0,解得x=1或x=3.因?yàn)楹瘮?shù)f(x)恰有2個(gè)零點(diǎn),結(jié)合函數(shù)的圖象(圖略)可知1<λ≤3或λ>4.
【答案】 (1) (2)(1,4) (1,3]∪(4,+∞)
角度三 利用函數(shù)零點(diǎn)的性質(zhì)求參數(shù)的范圍
已知函數(shù)f(x)=|ln x|,若00),由00 17、,從而即所以a+2b=+2et,而et>1,又y=2x+在(1,+∞)上為增函數(shù),所以2et+∈(3,+∞).故選C.
【答案】 C
已知函數(shù)的零點(diǎn)(或方程根)的情況求
參數(shù)問(wèn)題常用的三種方法
(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍.
(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決.
(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.
1.(2019·高考浙江卷)設(shè)a,b∈R,函數(shù)f(x)=若函數(shù)y=f(x)-ax-b恰有3個(gè)零點(diǎn),則( )
A.a(chǎn)<-1,b<0 B. 18、a<-1,b>0
C.a(chǎn)>-1,b<0 D.a(chǎn)>-1,b>0
解析:選C.由題意可得,當(dāng)x≥0時(shí),f(x)-ax-b=x3-(a+1)x2-b,令f(x)-ax-b=0,則b=x3-(a+1)x2=x2[2x-3(a+1)].因?yàn)閷?duì)任意的x∈R,f(x)-ax-b=0有3個(gè)不同的實(shí)數(shù)根,所以要使?jié)M足條件,則當(dāng)x≥0時(shí),b=x2[2x-3(a+1)]必須有2個(gè)零點(diǎn),所以>0,解得a>-1.所以b<0.故選C.
2.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是________.
解析:函數(shù)g(x)=f(x)-m有3個(gè)零點(diǎn),轉(zhuǎn)化為f(x)-m=0的根有3 19、個(gè),進(jìn)而轉(zhuǎn)化為y=f(x),y=m的交點(diǎn)有3個(gè).畫(huà)出函數(shù)y=f(x)的圖象,則直線y=m與其有3個(gè)公共點(diǎn).又拋物線頂點(diǎn)為(-1,1),由圖可知實(shí)數(shù)m的取值范圍是(0,1).
答案:(0,1)
3.(2020·杭州學(xué)軍中學(xué)高三質(zhì)檢)若函數(shù)f(x)=|2x-1|+ax-5(a是常數(shù),且a∈R)恰有兩個(gè)不同的零點(diǎn),則a的取值范圍為_(kāi)_______.
解析:由f(x)=0,得|2x-1|=-ax+5.
作出y=|2x-1|和y=-ax+5的圖象,觀察可以知道,當(dāng)-2
20、(-2,2)
[基礎(chǔ)題組練]
1.(2020·浙江省名校聯(lián)考)已知函數(shù)y=f(x)的圖象是連續(xù)不斷的曲線,且有如下的對(duì)應(yīng)值表:
x
1
2
3
4
5
6
y
124.4
33
-74
24.5
-36.7
-123.6
則函數(shù)y=f(x)在區(qū)間[1,6]上的零點(diǎn)至少有( )
A.2個(gè) B.3個(gè)
C.4個(gè) D.5個(gè)
解析:選B.依題意,f(2)>0,f(3)<0,f(4)>0,f(5)<0,根據(jù)零點(diǎn)存在性定理可知,f(x)在區(qū)間(2,3),(3,4),(4,5)上均至少含有一個(gè)零點(diǎn),故函數(shù)y=f(x)在區(qū)間[1,6]上的零 21、點(diǎn)至少有3個(gè).
2.(2020·溫州十校聯(lián)考(一))設(shè)函數(shù)f(x)=ln x+x-2,則函數(shù)f(x)的零點(diǎn)所在的區(qū)間為( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:選B.法一:因?yàn)閒(1)=ln 1+1-2=-1<0,f(2)=ln 2>0,所以f(1)·f(2)<0,因?yàn)楹瘮?shù)f(x)=ln x+x-2的圖象是連續(xù)的,所以函數(shù)f(x)的零點(diǎn)所在的區(qū)間是(1,2).
法二:函數(shù)f(x)的零點(diǎn)所在的區(qū)間為函數(shù)g(x)=ln x,h(x)=-x+2圖象交點(diǎn)的橫坐標(biāo)所在的區(qū)間,作出兩函數(shù)的圖象如圖所示,由圖可知,函數(shù)f(x)的零點(diǎn)所在的區(qū)間為(1,2 22、).
3.已知函數(shù)f(x)=-cos x,則f(x)在[0,2π]上的零點(diǎn)個(gè)數(shù)為( )
A.1 B.2
C.3 D.4
解析:選C.作出g(x)=與h(x)=cos x的圖象如圖所示,可以看到其在[0,2π]上的交點(diǎn)個(gè)數(shù)為3,所以函數(shù)f(x)在[0,2π]上的零點(diǎn)個(gè)數(shù)為3,故選C.
4.已知函數(shù)f(x)=-tan x,若實(shí)數(shù)x0是函數(shù)y=f(x)的零點(diǎn),且0 23、 24、-1)2-4×2×(1+λ)=0,解得 λ=-.故選C.
6.(2020·寧波市余姚中學(xué)期中檢測(cè))已知函數(shù)f(x)=-kx2(k∈R)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.k<0 B.k<1
C.0 25、
因?yàn)棣ぃ?k2+4k>0,且-<0,所以方程有一正根,一負(fù)根,所以當(dāng)x>0時(shí),方程有唯一解.即當(dāng)x≥0時(shí),方程有兩個(gè)解.
當(dāng)k>0,x<0時(shí),f(x)=-kx2=0,
即kx3+2kx2+x=0,kx2+2kx+1=0,
此時(shí)必須有兩個(gè)解才滿足題意,所以Δ=4k2-4k>0,解得k>1,
綜上所述k>1.
7.(2020·金麗衢十二校高三聯(lián)考)設(shè)函數(shù)f(x)=,則f(f(e))=________,函數(shù)y=f(x)-1的零點(diǎn)為_(kāi)_______.
解析:因?yàn)閒(x)=,
所以f(e)=ln e=1,
f(f(e))=f(1)=tan 0=0,
若0 26、n[(x-1)]=1,
方程無(wú)解;
若x>1,f(x)=1?ln x=1?x=e.
答案:0 e
8.已知函數(shù)f(x)=+a的零點(diǎn)為1,則實(shí)數(shù)a的值為_(kāi)_______.
解析:由已知得f(1)=0,即+a=0,解得a=-.
答案:-
9.已知函數(shù)f(x)=則函數(shù)g(x)=f(x)-的零點(diǎn)所構(gòu)成的集合為_(kāi)_______.
解析:令g(x)=0,得f(x)=,所以或解得x=-1或x=或x=,故函數(shù)g(x)=f(x)-的零點(diǎn)所構(gòu)成的集合為.
答案:
10.(2020·杭州學(xué)軍中學(xué)模擬)已知函數(shù)f(x)=|x3-4x|+ax-2恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為_(kāi)_______.
27、
解析:函數(shù)f(x)=|x3-4x|+ax-2恰有2個(gè)零點(diǎn)即函數(shù)y=|x3-4x|與y=2-ax的圖象有2個(gè)不同的交點(diǎn).作出函數(shù)y=|x3-4x|的圖象如圖,當(dāng)直線y=2-ax與曲線y=-x3+4x,x∈[0,2]相切時(shí),設(shè)切點(diǎn)坐標(biāo)為(x0,-x+4x0),則切線方程為y-(-x+4x0)=(-3x+4)(x-x0),且經(jīng)過(guò)點(diǎn)(0,2),代入解得x0=1,此時(shí)a=-1,由函數(shù)圖象的對(duì)稱性可得實(shí)數(shù)a的取值范圍為a<-1或a>1.
答案:a<-1或a>1
11.設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對(duì)任意b∈R,函數(shù)f 28、(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
解:(1)當(dāng)a=1,b=-2時(shí),f(x)=x2-2x-3,令f(x)=0,得x=3或x=-1.
所以函數(shù)f(x)的零點(diǎn)為3和-1.
(2)依題意,f(x)=ax2+bx+b-1=0有兩個(gè)不同實(shí)根,所以b2-4a(b-1)>0恒成立,即對(duì)于任意b∈R,b2-4ab+4a>0恒成立,所以有(-4a)2-4×(4a)<0?a2-a<0,解得0
29、
A.當(dāng)k>0時(shí),有3個(gè)零點(diǎn);當(dāng)k<0時(shí),有4個(gè)零點(diǎn)
B.當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有3個(gè)零點(diǎn)
C.無(wú)論k為何值,均有3個(gè)零點(diǎn)
D.無(wú)論k為何值,均有4個(gè)零點(diǎn)
解析:選C.令f[f(kx)+1]+1=0得,
或,
解得f(kx)+1=0或f(kx)+1=;
由f(kx)+1=0得,
或;
即x=0或kx=;
由f(kx)+1=得,
或;
即ekx=1+(無(wú)解)或kx=e-1;
綜上所述,x=0或kx=或kx=e-1;
故無(wú)論k為何值,均有3個(gè)解,故選C.
2.(2020·寧波市高三教學(xué)評(píng)估)設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R且a>0),則 30、“f<0”是“f(x)與f(f(x))都恰有兩個(gè)零點(diǎn)”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
解析:選C.由已知a>0,函數(shù)f(x)開(kāi)口向上,f(x)有兩個(gè)零點(diǎn),最小值必然小于0,當(dāng)取得最小值時(shí),x=-,即f<0,令f(x)=-,則f(f(x))=f,因?yàn)閒<0,所以f(f(x))<0,所以f(f(x))必有兩個(gè)零點(diǎn).同理f<0?f<0?x=-,因?yàn)閤=-是對(duì)稱軸,a>0,開(kāi)口向上,f<0,必有兩個(gè)零點(diǎn)所以C選項(xiàng)正確.
3.(2020·瑞安市龍翔高中高三月考)若關(guān)于x的不等式x2+|x-a|<2至少有一個(gè)正數(shù)解,則實(shí)數(shù)a的 31、取值范圍是________.
解析:不等式為2-x2>|x-a|,則0<2-x2.
在同一坐標(biāo)系畫(huà)出y=2-x2(y≥0,x≥0)和y=|x|兩個(gè)函數(shù)圖象,將絕對(duì)值函數(shù)y=|x|向左移動(dòng),當(dāng)右支經(jīng)過(guò)(0,2)點(diǎn)時(shí),a=-2;將絕對(duì)值函數(shù)y=|x|向右移動(dòng)讓左支與拋物線y=2-x2(y≥0,x≥0)相切時(shí),
由,可得x2-x+a-2=0,
再由Δ=0解得a=.
數(shù)形結(jié)合可得,實(shí)數(shù)a的取值范圍是.
答案:
4.已知函數(shù)f(x)=,g(x)=logx,記函數(shù)h(x)=則函數(shù)F(x)=h(x)+x-5的所有零點(diǎn)的和為_(kāi)_______.
解析:由題意知函數(shù)h(x)的圖象如圖所示,易知函數(shù)h(x)的圖象關(guān)于直線y=x對(duì)稱,函數(shù)F(x)所有零點(diǎn)的和就是函數(shù)y=h(x)與函數(shù)y=5-x圖象交點(diǎn)橫坐標(biāo)的和,設(shè)圖象交點(diǎn)的橫坐標(biāo)分別為x1,x2,因?yàn)閮珊瘮?shù)圖象的交點(diǎn)關(guān)于直線y=x對(duì)稱,所以=5-,所以x1+x2=5.
答案:5
14
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 624E竣工驗(yàn)收備案表內(nèi)頁(yè)四.xls
- 624D竣工驗(yàn)收備案表內(nèi)頁(yè)三.xls
- 624C竣工驗(yàn)收備案表內(nèi)頁(yè)二.xls
- 624B竣工驗(yàn)收備案表內(nèi)頁(yè)一.xls
- 624A竣工驗(yàn)收備案表封面.xls
- 623C建設(shè)工程竣工驗(yàn)收?qǐng)?bào)告內(nèi)頁(yè)2.xls
- 623B建設(shè)工程竣工驗(yàn)收?qǐng)?bào)告內(nèi)頁(yè)1.xls
- 623A建設(shè)工程竣工驗(yàn)收?qǐng)?bào)告封面.xls
- 622B質(zhì)量保修書(shū)內(nèi)頁(yè).xls
- 622A質(zhì)量保修書(shū)封面.xls
- 621B工程質(zhì)量驗(yàn)收計(jì)劃書(shū)內(nèi)頁(yè)1.xls
- 621A工程質(zhì)量驗(yàn)收計(jì)劃書(shū)封面.xls
- 620C設(shè)計(jì)文件質(zhì)量檢查報(bào)告內(nèi)頁(yè)2.xls
- 620B設(shè)計(jì)文件質(zhì)量檢查報(bào)告內(nèi)頁(yè)1.xls
- 620A設(shè)計(jì)文件質(zhì)量檢查報(bào)告封面.xls