(浙江專用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 2 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式教學(xué)案
《(浙江專用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 2 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式教學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 2 第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式教學(xué)案(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第2講 同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式 1.同角三角函數(shù)的基本關(guān)系 (1)平方關(guān)系:sin2α+cos2α=1. (2)商數(shù)關(guān)系:tan α=. [基本關(guān)系式變形] sin2α=1-cos2α,cos2α=1-sin2α,sin α=tan αcos α, cos α=,(sin α±cos α)2=1±2 sin αcos α. 2.六組誘導(dǎo)公式 組數(shù) 一 二 三 四 五 六 角 α+2kπ (k∈Z) π+α -α π-α -α +α 正弦 sin α -sin__α -sin α sin α cos__α cos α
2、余弦 cos α -cos α cos__α -cos α sin α -sin__α 正切 tan α tan α -tan α -tan__α 口訣 函數(shù)名不變 符號(hào)看象限 函數(shù)名改變 符號(hào)看象限 簡(jiǎn)記口訣:把角統(tǒng)一表示為±α(k∈Z)的形式,奇變偶不變,符號(hào)看象限. [疑誤辨析] 判斷正誤(正確的打“√”,錯(cuò)誤的打“×”) (1)對(duì)任意的角α,β,都有sin2α+cos2β=1.( ) (2)若α∈R,則tan α=恒成立.( ) (3)sin(π+α)=-sin α成立的條件是α為銳角.( ) (4)若cos(nπ-θ)=
3、(n∈Z),則cos θ=.( ) 答案:(1)× (2)× (3)× (4)× [教材衍化] 1.(必修4P19例6改編)若sin α=,<α<π,則tan α=________. 解析:因?yàn)?α<π,所以cos α=-=-, 所以tan α==-. 答案:- 2.(必修4P22B組T3改編)已知tan α=2,則的值為________. 解析:原式===3. 答案:3 3.(必修4P28練習(xí)T7改編)化簡(jiǎn)·sin(α-π)·cos(2π-α)的結(jié)果為________. 解析:原式=·(-sin α)·cos α=-sin2α. 答案:-sin2α [易錯(cuò)糾偏]
4、 (1)不會(huì)運(yùn)用消元的思想; (2)π±α的形式?jīng)]有把k按奇數(shù)和偶數(shù)進(jìn)行分類討論導(dǎo)致出錯(cuò). 1.已知tan x=2,則1+sin2x的值為________. 解析:1+sin2x=cos2x+2sin2x == =. 答案: 2.已知A=+(k∈Z),則A的值構(gòu)成的集合是________. 解析:k=2n(n∈Z)時(shí), A=+ =+=2. 當(dāng)k=2n+1(n∈Z)時(shí), A=+ =+ =-1+(-1)=-2. 答案:{2,-2} 同角三角函數(shù)的基本關(guān)系式(高頻考點(diǎn)) 同角三角函數(shù)的基本關(guān)系式的應(yīng)用很廣泛,也比較靈活.高考中常以選擇題、填空題的
5、形式出現(xiàn).主要命題角度有:
(1)知弦求弦;
(2)知弦求切;
(3)知切求弦.
角度一 知弦求弦
(2020·麗水模擬)已知sin θ+cos θ=,θ∈(0,),則sin θ-cos θ的值為( )
A. B. C.- D.-
【解析】 (sin θ+cos θ)2=,所以1+2sin θcos θ=,所以2sin θcos θ=,由(sin θ-cos θ)2=1-2sin θcos θ=1-=,可得sin θ-cos θ=±.又因?yàn)棣取?0,),sin θ 6、且α∈,則tan α=( )
A. B. C.- D.±
【解析】 因?yàn)閏os=,所以sin α=-,顯然α在第三象限,所以cos α=-,故tan α=.
【答案】 B
角度三 知切求弦
若tan α=,則cos2α+2sin 2α=( )
A. B. C.1 D.
【解析】 法一:由tan α==,cos2α+sin2α=1,得或則sin 2α=2sin αcos α=,則cos2α+2sin 2α=+=.
法二:cos2α+2sin 2α 7、====.
【答案】 A
同角三角函數(shù)基本關(guān)系式的應(yīng)用技巧
(1)知弦求弦:利用誘導(dǎo)公式及平方關(guān)系sin2α+cos2α=1求解.
(2)知弦求切:常通過(guò)平方關(guān)系sin2α+cos2α=1及商數(shù)關(guān)系tan α=結(jié)合誘導(dǎo)公式進(jìn)行求解.
(3)知切求弦:通常先利用商數(shù)關(guān)系轉(zhuǎn)化為sin α=tan α·cos α的形式,然后用平方關(guān)系求解.若已知正切值,求一個(gè)關(guān)于正弦和余弦的齊次分式的值,則可以通過(guò)分子、分母同時(shí)除以一個(gè)余弦的齊次冪將其轉(zhuǎn)化為一個(gè)關(guān)于正切的分式,代入正切值就可以求出這個(gè)分式的值,如=;asin2α+bcos2α+csin αcos α=
=.
1.已知sin 8、 α+cos α=,那么角α的終邊在( )
A.第一象限 B.第二象限
C.第三象限 D.第二或第四象限
解析:選D.因?yàn)閟in α+cos α=,
所以兩邊平方得1+2sin αcos α=,
即2sin αcos α=-,
所以sin αcos α<0,驗(yàn)證可知,角α是第二或第四象限角,故選D.
2.已知α是第二象限的角,tan α=-,則cos α=________.
解析:因?yàn)棣潦堑诙笙薜慕牵?
所以sin α>0,cos α<0,由tan α=-,
得cos α=-2sin α,代入sin2α+cos2α=1中,
得5sin2α=1,所以sin α=, 9、cos α=-.
答案:-
誘導(dǎo)公式的應(yīng)用
(1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°)=________.
(2)已知cos α是方程3x2-x-2=0的根,且α是第三象限角,則等于________.
(3)已知cos(-α)=,則sin(α-)=________.
【解析】 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°·sin 1 050°=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°) 10、
=-sin 120°cos 210°-cos 300°sin 330°
=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)
=sin 60°cos 30°+cos 60°sin 30°
=×+×=1.
(2)因?yàn)榉匠?x2-x-2=0的根為x1=1,x2=-,
由題知cos α=-,
所以sin α=-,tan α=.
所以原式==tan2α=.
(3)因?yàn)椋剑驭粒剑?,所以sin=sin
=-cos=-.
【答案】 (1)1 (2) (3)-
(1)誘導(dǎo)公式用法的一般思路
①化大角為小角 11、.
②角中含有加減的整數(shù)倍時(shí),用公式去掉的整數(shù)倍.
(2)常見(jiàn)的互余和互補(bǔ)的角
①常見(jiàn)的互余的角:-α與+α;+α與-α;+α與-α等.
②常見(jiàn)的互補(bǔ)的角:+θ與-θ;+θ與-θ等.
(3)三角函數(shù)式化簡(jiǎn)的方向
①切化弦,統(tǒng)一名.
②用誘導(dǎo)公式,統(tǒng)一角.
③用因式分解將式子變形,化為最簡(jiǎn).
1.若sin(+α)=-,且α∈(,π),則sin(π-2α)=( )
A. B.
C.- D.-
解析:選D.由sin(+α)=cos α=-,且α∈(,π),得sin α=,所以sin(π-2α)=sin 2α=2sin αcos α=-, 12、選項(xiàng)D正確.
2.已知角θ的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在直線3x-y=0上,則=________.
解析:由題意可知tan θ=3,原式===.
答案:
3.(2020·寧波高三模擬)已知cos(π+α)=-,求(n∈Z).
解:因?yàn)閏os(π+α)=-,
所以-cos α=-,cos α=.
=
===-=-4.
[基礎(chǔ)題組練]
1.計(jì)算:sin π+cos π=( )
A.-1 B.1
C.0 D.-
解析:選A.原式=sin+cos
=-sin +cos=--cos
=--=-1.
2.已知tan(α-π 13、)=,且α∈,則sin=( )
A. B.-
C. D.-
解析:選B.由tan(α-π)=?tan α=.
又因?yàn)棣痢剩詂os α=-,
所以α為第三象限的角,sin=cos α=-.
3.已知sin(π+θ)=-cos(2π-θ),|θ|<,則θ等于( )
A.- B.-
C. D.
解析:選D.因?yàn)閟in(π+θ)=-cos(2π-θ),
所以-sin θ=-cos θ,所以tan θ=.
因?yàn)閨θ|<,所以θ=.
4.已知sin(3π-α)=-2sin(+α),則sin αcos α等于( )
A.- B.
14、C.或- D.-
解析:選A.因?yàn)閟in(3π-α)=sin(π-α)=-2sin(+α),所以sin α=-2cos α,所以tan α=-2,
當(dāng)α在第二象限時(shí),,
所以sin αcos α=-;
當(dāng)α在第四象限時(shí),,
所以sin αcos α=-,
綜上,sin αcos α=-,故選A.
5.已知=5,則sin2α-sin αcos α的值為( )
A.- B.-
C. D.
解析:選D.依題意得=5,所以tan α=2.
所以sin2α-sin αcos α=
===.
6.已知sin α+3cos α+1=0,則tan α的值為( )
A 15、.或 B.-或-
C.或- D.-或不存在
解析:選D.由sin α=-3cos α-1,可得(-3cos α-1)2+cos2α=1,即5cos2α+3cos α=0,解得cos α=-或cos α=0,當(dāng)cos α=0時(shí),tan α的值不存在,當(dāng)cos α=-時(shí),sin α=-3cos α-1=,tan α==-,故選D.
7.化簡(jiǎn)+=________.
解析:原式=+=-sin α+sin α=0.
答案:0
8.已知sin=,則cos=________.
解析:cos=cos
=cos=-cos,
而sin=sin
=cos=,
所以cos=-.
答案: 16、-
9.已知θ為第四象限角,sin θ+3cos θ=1,則tan θ=________.
解析:由(sin θ+3cos θ)2=1=sin2θ+cos2θ,得6sin θcos θ=-8cos2θ,又因?yàn)棣葹榈谒南笙藿?,所以cos θ≠0,所以6sin θ=-8cos θ,所以tan θ=-.
答案:-
10.(2020·杭州市富陽(yáng)二中高三質(zhì)檢)若3sin α+cos α=,則tan α的值為________;的值為________.
解析:由3sin α+cos α=,得到cos α=-3sin α,代入sin2α+cos2α=1得sin2α+(-3sin α)2=1,
得1 17、0sin2α-6sin α+9=0,即(sin α-3)2=0,
解得sin α=,cos α=,
則tan α==3;
=
===.
答案:3
11.已知π<α<2π,cos(α-7π)=-,求sin(3π+α)·tan的值.
解:因?yàn)閏os(α-7π)=cos(7π-α)=cos(π-α)=-cos α
=-,所以cos α=.
所以sin(3π+α)·tan
=sin(π+α)·
=sin α·tan=sin α·
=sin α·=cos α=.
12.已知α為第三象限角,
f(α)=.
(1)化簡(jiǎn)f(α);
(2)若cos(α-)=,求f(α)的值 18、.
解:(1)f(α)=
==-cos α.
(2)因?yàn)閏os(α-)=,
所以-sin α=,
從而sin α=-.
又α為第三象限角,
所以cos α=-=-,
所以f(α)=-cos α=.
[綜合題組練]
1.(2020·臺(tái)州市高三期末評(píng)估)已知cos α=1,則sin=( )
A. B.
C.- D.-
解析:選C.因?yàn)閏os α=1?α=2kπ,所以sin=sin=sin=-sin =-,故選C.
2.(2020·金華十校聯(lián)考)已知sin αcos α=,且<α<,則cos α-sin α的值為( )
A.- B.
19、
C.- D.
解析:選B.因?yàn)?α<,
所以cos α<0,sin α<0且|cos α|<|sin α|,
所以cos α-sin α>0.
又(cos α-sin α)2=1-2sin αcos α=1-2×=,
所以cos α-sin α=.
3.sin π·cos π·tan的值是________.
解析:原式=sin·cos·tan
=··
=××(-)=-.
答案:-
4.若sin α=2sin β,tan α=3tan β,則cos α=________.
解析:因?yàn)閟in α=2sin β,①
tan α=3tan β,
tan2α=9tan2 20、β.②
由①2÷②得:9cos2α=4cos2β.③
由①2+③得sin2α+9cos2α=4.
又sin2α+cos2α=1,
所以cos2α=,
所以cos α=±.
答案:±
5.已知f(x)=(n∈Z).
(1)化簡(jiǎn)f(x)的表達(dá)式;
(2)求f+f的值.
解:(1)當(dāng)n為偶數(shù),即n=2k(k∈Z)時(shí),
f(x)=
=
=
=sin2x(n=2k,k∈Z);
當(dāng)n為奇數(shù),即n=2k+1(k∈Z)時(shí),
f(x)=
=
=
=
=sin2x(n=2k+1,k∈Z).
綜上得f(x)=sin2x.
(2)由(1)得
f+f=sin2+sin2
=sin2+sin2
=sin2+cos2=1.
14
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 624E竣工驗(yàn)收備案表內(nèi)頁(yè)四.xls
- 624D竣工驗(yàn)收備案表內(nèi)頁(yè)三.xls
- 624C竣工驗(yàn)收備案表內(nèi)頁(yè)二.xls
- 624B竣工驗(yàn)收備案表內(nèi)頁(yè)一.xls
- 624A竣工驗(yàn)收備案表封面.xls
- 623C建設(shè)工程竣工驗(yàn)收?qǐng)?bào)告內(nèi)頁(yè)2.xls
- 623B建設(shè)工程竣工驗(yàn)收?qǐng)?bào)告內(nèi)頁(yè)1.xls
- 623A建設(shè)工程竣工驗(yàn)收?qǐng)?bào)告封面.xls
- 622B質(zhì)量保修書內(nèi)頁(yè).xls
- 622A質(zhì)量保修書封面.xls
- 621B工程質(zhì)量驗(yàn)收計(jì)劃書內(nèi)頁(yè)1.xls
- 621A工程質(zhì)量驗(yàn)收計(jì)劃書封面.xls
- 620C設(shè)計(jì)文件質(zhì)量檢查報(bào)告內(nèi)頁(yè)2.xls
- 620B設(shè)計(jì)文件質(zhì)量檢查報(bào)告內(nèi)頁(yè)1.xls
- 620A設(shè)計(jì)文件質(zhì)量檢查報(bào)告封面.xls