(江蘇專版)2019版高考數(shù)學大一輪復習 第五章 平面向量 第31講 平面向量的綜合應(yīng)用學案 理
《(江蘇專版)2019版高考數(shù)學大一輪復習 第五章 平面向量 第31講 平面向量的綜合應(yīng)用學案 理》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專版)2019版高考數(shù)學大一輪復習 第五章 平面向量 第31講 平面向量的綜合應(yīng)用學案 理(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第31講 平面向量的綜合應(yīng)用 考試要求 1.用向量方法解決某些簡單的平面幾何問題(A級要求);2.用向量方法解決簡單的力學問題與其他一些實際問題(A級要求). 診 斷 自 測 1.思考辨析(在括號內(nèi)打“√”或“×”) (1)若∥,則A,B,C三點共線.( ) (2)解析幾何中的坐標、直線平行、垂直、長度等問題都可以用向量解決.( ) (3)實現(xiàn)平面向量與三角函數(shù)、平面向量與解析幾何之間的轉(zhuǎn)化的主要手段是向量的坐標運算.( ) (4)在△ABC中,若·<0,則△ABC為鈍角三角形.( ) 解析 (4)中,與的夾角為π-B,是鈍角,只能說明B為銳角. 答案 (1)
2、√ (2)√ (3)√ (4)× 2.(教材改編)已知力F=(2,3)作用在一物體上,使物體從A(2,0)移動到B(-2,3),則F對物體所做的功為________. 解析 由已知位移s==(-4,3), ∴力F做的功為W=F·s=2×(-4)+3×3=1. 答案 1 3.已知△ABC的三個頂點的坐標分別為A(3,4),B(5,2),C(-1,-4),則這個三角形的形狀是________. 解析 ∵=(2,-2),=(6,6), ∴·=12-12=0, ∴⊥,∴△ABC為直角三角形. 答案 直角三角形 4.在四邊形ABCD中,=(1,2),=(-4,2),則該四邊形的面積為
3、________. 解析 ·=(1,2)·(-4,2)=0,則⊥,故四邊形ABCD的對角線互相垂直,面積S=||||=××2=5. 答案 5 5.(2018·蘇州調(diào)研)在梯形ABCD中,=2,||=6,P為梯形ABCD所在平面上一點,且滿足++4=0,·=||||,Q為邊AD上的一個動點,則||的最小值為________. 解析 設(shè)AB中點為E,則四邊形BCDE為平行四邊形,且+=2,所以=2,D,E,P三點共線,||=6,||=2.又·=·=3· =3||||cos∠ADE=||||, 所以cos∠ADE=,sin∠ADE=. 要使||最小,即PQ⊥AD. 此時||=||si
4、n∠ADE=. 答案 知 識 梳 理 1.向量在平面幾何中的應(yīng)用 (1)用向量解決常見平面幾何問題的技巧: 問題類型 所用知識 公式表示 線平行、點共線等問題 向量共線定理 a∥b?a=λb?x1y2-x2y1=0, 其中a=(x1,y1),b=(x2,y2),b≠0 垂直問題 數(shù)量積的運算性質(zhì) a⊥b?a·b=0?x1x2+y1y2=0, 其中a=(x1,y1),b=(x2,y2),且a,b為非零向量 夾角問題 數(shù)量積的定義 cos θ=(θ為向量a,b的夾角),其中a,b為非零向量 長度問題 數(shù)量積的定義 |a|==,其中a=(x,y),a為非零
5、向量 (2)用向量方法解決平面幾何問題的步驟: 平面幾何問題向量問題解決向量問題解決幾何問題. 2.平面向量在物理中的應(yīng)用 (1)由于物理學中的力、速度、位移都是矢量,它們的分解與合成與向量的加法和減法相似,可以用向量的知識來解決. (2)物理學中的功是一個標量,是力F與位移s的數(shù)量積,即W=F·s=|F||s|cos θ(θ為F與s的夾角). 3.向量在三角函數(shù)中的應(yīng)用 與三角函數(shù)相結(jié)合考查向量的數(shù)量積的坐標運算及其應(yīng)用是高考熱點題型.解答此類問題,除了要熟練掌握向量數(shù)量積的坐標運算公式、向量模、向量夾角的坐標運算公式外,還應(yīng)掌握三角恒等變換的相關(guān)知識. 4.向量在解析幾何中
6、的應(yīng)用 向量在解析幾何中的應(yīng)用是以解析幾何中的坐標為背景的一種向量描述.它主要強調(diào)向量的坐標問題,進而利用直線和圓錐曲線的位置關(guān)系的相關(guān)知識來解答,坐標的運算是考查的主體. 考點一 平面向量在平面幾何中的應(yīng)用 【例1】 (1)在平行四邊形ABCD中,AD=1,∠BAD=60°,E為CD的中點.若·=1,則AB的長為________. (2)(2017·蘇、錫、常、鎮(zhèn)調(diào)研(二))在△ABC中,AB⊥AC,AB=,AC=t,P是△ABC所在平面內(nèi)一點,若=+,則△PBC面積的最小值為________. 解析 (1)由題意,可知=+,=-+.因為·=1,所以(+)·=1, 即2+·-
7、2=1.① 因為||=1,∠BAD=60°,所以·=||, 因此①式可化為1+||-||2=1,解得||=0(舍去)或,所以AB的長為. (2)以A為坐標原點,AC所在直線為x軸建立直角坐標系,則 P(1,4),C(t,0),B,BC:+ty=1,x+t2y-t=0, S△PBC=××=|4t+-1|≥|2-1|=,△PBC面積的最小值為. 答案 (1) (2) 規(guī)律方法 向量與平面幾何綜合問題的解法 (1)坐標法 把幾何圖形放在適當?shù)淖鴺讼抵?,則有關(guān)點與向量就可以用坐標表示,這樣就能進行相應(yīng)的代數(shù)運算和向量運算,從而使問題得到解決. (2)基向量法 適當選取一組基底
8、,溝通向量之間的聯(lián)系,利用向量間的關(guān)系構(gòu)造關(guān)于未知量的方程進行求解. 【訓練1】 (1)在△ABC中,已知向量與滿足·=0,且·=,則△ABC的形狀為________三角形. (2)在△ABC中,若·=·=·,則點O是△ABC的________(從“重心”“垂心”“內(nèi)心”“外心”中選填一個). 解析 (1),分別為平行于,的單位向量,由平行四邊形法則可知+為∠BAC的平分線.因為·=0,所以∠BAC的平分線垂直于BC,所以AB=AC. 又·=··cos∠BAC=, 所以cos∠BAC=,又0<∠BAC<π,故∠BAC=, 所以△ABC為等邊三角形. (2)∵·=·, ∴·(-)
9、=0, ∴·=0, ∴OB⊥CA,即OB為△ABC底邊CA上的高所在直線. 同理·=0,·=0, 故O為△ABC的垂心. 答案 (1)等邊 (2)垂心 考點二 向量在解析幾何中的應(yīng)用 【例2】 (1)(2018·南京、鹽城模擬)已知向量=(k,12),=(4,5),=(10,k),且A,B,C三點共線,當k<0時,若k為直線的斜率,則過點(2,-1)的直線方程為________. (2)(2018·江蘇大聯(lián)考)已知P為單位圓O上的點,M,N為圓x2+y2=16上兩點,函數(shù)f(x)=|-x|(x∈R),若函數(shù)f(x)的最小值為t,且當點P在單位圓上運動時,t的最大值為3,則線段M
10、N的長度為________. 解析 (1)∵=-=(4-k,-7), =-=(6,k-5),且∥, ∴(4-k)(k-5)+6×7=0, 解得k=-2或k=11. 由k<0可知k=-2,則過點(2,-1)且斜率為-2的直線方程為y+1=-2(x-2),即2x+y-3=0. (2)f(x)=, t= ===dP-MN, 由題意得(dP-MN)max=3, 因此dO-MN=2,MN=2=4. 答案 (1)2x+y-3=0 (2)4 規(guī)律方法 向量在解析幾何中的作用: (1)載體作用,向量在解析幾何問題中出現(xiàn),多用于“包裝”,解決此類問題時關(guān)鍵是利用向量的意義、運算脫去“向
11、量外衣”,導出曲線上點的坐標之間的關(guān)系,從而解決有關(guān)距離、斜率、夾角、軌跡、最值等問題; (2)工具作用,利用a⊥b?a·b=0;a∥b?a=λb(b≠0),可解決垂直、平行問題,特別地,向量垂直、平行的坐標表示對于解決解析幾何中的垂直、平行問題是一種比較可行的方法. 【訓練2】 (1)(2018·鹽城模擬)如圖所示,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則(+)·的最小值為________. (2)設(shè)O為坐標原點,C為圓(x-2)2+y2=3的圓心,且圓上有一點M(x,y)滿足·=0,則=________. 解析 (1)∵圓心O是
12、直徑AB的中點, ∴+=2, ∴(+)·=2·, ∵與共線且方向相反, ∴當大小相等時,乘積最小.由條件知, 當PO=PC=時,最小值為-2××=-. (2)∵·=0,∴OM⊥CM, ∴OM是圓的切線,設(shè)OM的方程為y=kx, 由=,得k=±, 即=±. 答案 (1)- (2)± 考點三 向量的其他應(yīng)用(多維探究) 命題角度1 向量在物理中的應(yīng)用 【例3-1】 如圖,一質(zhì)點受到平面上的三個力F1,F(xiàn)2,F(xiàn)3(單位:牛頓)的作用而處于平衡狀態(tài).已知F1,F(xiàn)2成60°角,且F1,F(xiàn)2的大小分別為2和4,則F3的大小為________. 解析 如題圖所示,由已知得F1
13、+F2+F3=0,則F3=-(F1+F2),即F=F+F+2F1·F2=F+F+2|F1|·|F2|·cos 60°=28.故|F3|=2. 答案 2 命題角度2 向量在不等式中的應(yīng)用 【例3-2】 已知x,y滿足若=(x,1),=(2,y),且·的最大值是最小值的8倍,則實數(shù)a的值是________. 解析 因為=(x,1),=(2,y),所以·=2x+y,令z=2x+y,依題意,不等式組所表示的可行域如圖中陰影部分所示(含邊界),觀察圖象可知,當目標函數(shù)z=2x+y過點C(1,1)時,zmax=2×1+1=3,目標函數(shù)z=2x+y過點F(a,a)時,zmin=2a+a=3a,所以3
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 領(lǐng)導班子2024年度民主生活會對照檢查材料范文(三篇)
- 金融工作主題黨課講稿范文(匯編)
- 鍋爐必備學習材料
- 鍋爐設(shè)備的檢修
- 主題黨課講稿:走中國特色金融發(fā)展之路加快建設(shè)金融強國(范文)
- 鍋爐基礎(chǔ)知識:啟爐注意事項技術(shù)問答題
- 領(lǐng)導班子2024年度民主生活會“四個帶頭”對照檢查材料范文(三篇)
- 正常運行時影響鍋爐汽溫的因素和調(diào)整方法
- 3.鍋爐檢修模擬考試復習題含答案
- 司爐作業(yè)人員模擬考試試卷含答案-2
- 3.鍋爐閥門模擬考試復習題含答案
- 某公司鍋爐安全檢查表
- 3.工業(yè)鍋爐司爐模擬考試題庫試卷含答案
- 4.司爐工考試題含答案解析
- 發(fā)電廠鍋爐的運行監(jiān)視和調(diào)整