2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題一 集合、邏輯用語等 題型練1 選擇題、填空題綜合練(一)理
《2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題一 集合、邏輯用語等 題型練1 選擇題、填空題綜合練(一)理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題一 集合、邏輯用語等 題型練1 選擇題、填空題綜合練(一)理(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題一 集合、邏輯用語等 題型練1 選擇題、填空題綜合練(一)理
1.(2018北京,理1)已知集合A={x||x|<2},B={-2,0,1,2},則A∩B=( )
A.{0,1} B.{-1,0,1}
C.{-2,0,1,2} D.{-1,0,1,2}
2.若復(fù)數(shù)z滿足2z+=3-2i,其中i為虛數(shù)單位,則z= ( )
A.1+2i B.1-2i
C.-1+2i D.-1-2i
3.若a>b>1,0 2、序框圖,若輸入的a值為1,則輸出的k值為( )
A.1
B.2
C.3
D.4
5.等差數(shù)列{an}的公差d≠0,且a3,a5,a15成等比數(shù)列,若a1=3,Sn為數(shù)列{an}的前n項(xiàng)和,則Sn的最大值為( )
A.8 B.6
C.4 D.4
6.某三棱錐的三視圖如圖所示,則該三棱錐的表面積是 ( )
A.2+ B.4+
C.2+2 D.5
7.已知直線l1:x+2y+1=0,l2:Ax+By+2=0(A,B∈{1,2,3,4}),則l1與l2不平行的概率為( )
A. B. C. D.
8.(2018全國(guó)Ⅰ,理3)某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng) 3、濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:
建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例
建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例
則下面結(jié)論中不正確的是( )
A.新農(nóng)村建設(shè)后,種植收入減少
B.新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C.新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
9.將函數(shù)y=sin圖象上的點(diǎn)P向左平移s(s>0)個(gè)單位長(zhǎng)度得到點(diǎn)P'.若P'位于函數(shù)y=sin 2x的圖象上,則( )
A.t=,s的最小值為 B.t=,s的最小值 4、為
C.t=,s的最小值為 D.t=,s的最小值為
10.函數(shù)f(x)=xcos x2在區(qū)間[0,2]上的零點(diǎn)的個(gè)數(shù)為 ( )
A.2 B.3 C.4 D.5
11.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A,B的任意一點(diǎn),若P為半徑OC上的動(dòng)點(diǎn),則()·的最小值為( )
A. B.9 C.- D.-9
12.函數(shù)f(x)=(1-cos x)sin x在[-π,π]上的圖象大致為 ( )
13.已知圓(x-2)2+y2=1經(jīng)過橢圓=1(a>b>0)的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),則此橢圓的離心率e= .?
14.的展開式中的常數(shù)項(xiàng)為 .(用數(shù)字表示)? 5、
15.我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計(jì)算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點(diǎn)后七位,其結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計(jì)算單位圓內(nèi)接正六邊形的面積S6,S6= .?
16.曲線y=x2與直線y=x所圍成的封閉圖形的面積為 .?
二、思維提升訓(xùn)練
1.設(shè)集合A={y|y=2x,x∈R},B={x|x2-1<0},則A∪B=( )
A.(-1,1) B.(0,1) C.(-1,+∞) D. (0,+∞)
2.(2018北京,理8)設(shè)集合A={(x,y) 6、|x-y≥1,ax+y>4,x-ay≤2},則( )
A.對(duì)任意實(shí)數(shù)a,(2,1)∈A
B.對(duì)任意實(shí)數(shù)a,(2,1)?A
C.當(dāng)且僅當(dāng)a<0時(shí),(2,1)?A
D.當(dāng)且僅當(dāng)a≤時(shí),(2,1)?A
3.若a>b>0,且ab=1,則下列不等式成立的是( )
A.a+ 7、.1 D.5
6.已知雙曲線C:=1(a>0,b>0)的一條漸近線與直線x+2y+1=0垂直,則雙曲線C的離心率為( )
A. B. C. D.
7.函數(shù)y=xsin x在[-π,π]上的圖象是( )
8.在△ABC中,a,b,c分別為∠A,∠B,∠C所對(duì)的邊,若函數(shù)f(x)= x3+bx2+(a2+c2-ac)x+1有極值點(diǎn),則∠B的取值范圍是( )
A. B.
C. D.
9.將函數(shù)y=sin 2x(x∈R)的圖象分別向左平移m(m>0)個(gè)單位、向右平移n(n>0)個(gè)單位所得到的圖象都與函數(shù)y=sin(x∈R)的圖象重合,則|m-n|的最小值為( )
A. B. 8、 C. D.
10.質(zhì)地均勻的正四面體表面分別印有0,1,2,3四個(gè)數(shù)字,某同學(xué)隨機(jī)地拋擲此正四面體2次,若正四面體與地面重合的表面數(shù)字分別記為m,n,且兩次結(jié)果相互獨(dú)立,互不影響.記m2+n2≤4為事件A,則事件A發(fā)生的概率為 ( )
A. B. C. D.
11.已知O是銳角三角形ABC的外接圓圓心,∠A=60°,=2m·,則m的值為( )
A. B. C.1 D.
12.設(shè)O為坐標(biāo)原點(diǎn),P是以F為焦點(diǎn)的拋物線y2=2px(p>0)上任意一點(diǎn),M是線段PF上的點(diǎn),且|PM|=2|MF|,則直線OM的斜率的最大值為( )
A. B.
C. D.1
13.(2018天津 9、,理9)i是虛數(shù)單位,復(fù)數(shù)= .?
14.在平面直角坐標(biāo)系中,設(shè)直線l:kx-y+=0與圓O:x2+y2=4相交于A,B兩點(diǎn),,若點(diǎn)M在圓O上,則實(shí)數(shù)k= .?
15.如圖,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的點(diǎn)P和線段AC上的點(diǎn)D,滿足PD=DA,PB=BA,則四面體PBCD的體積的最大值是 .?
16.已知等差數(shù)列{an}前n項(xiàng)的和為Sn,且滿足=3,則數(shù)列{an}的公差為 .?
題型練1 選擇題、填空題綜合練(一)
一、能力突破訓(xùn)練
1.A 解析 ∵A={x||x|<2}={x|-2 10、0,1,2},∴A∩B={0,1}.
2.B 解析 設(shè)z=a+bi(a,b∈R),則2z+=3a+bi=3-2i,故a=1,b=-2,則z=1-2i,選B.
3.C 解析 特殊值驗(yàn)證法,取a=3,b=2,c=,
因?yàn)?所以A錯(cuò);
因?yàn)?>2,所以B錯(cuò);
因?yàn)閘og3=-log32>-1=log2,所以D錯(cuò);
因?yàn)?log2=-3<2log3=-2log32,所以C正確.故選C.
4.B 解析 由程序框圖可知,輸入a=1,則k=0,b=1;進(jìn)入循環(huán)體,a=-,a=b不成立,k=1,a=-2,a=b不成立,k=2,a=1,此時(shí)a=b=1,輸出k,則k=2,故選B.
5.D 解析 由 11、題意得(a1+4d)2=(a1+2d)(a1+14d),即(3+4d)2=(3+2d)(3+14d),解得d=-2或d=0(舍去).
所以Sn=3n+(-2)=-n2+4n.
所以當(dāng)n=2時(shí),Sn=-n2+4n取最大值(Sn)max=8-4=4.故選D.
6.C 解析 由三視圖還原幾何體如圖.
∴S表面積=S△BCD+2S△ACD+S△ABC
=2×2+21+2
=2+=2+2
7.A 解析 由A,B∈{1,2,3,4},則有序數(shù)對(duì)(A,B)共有16種等可能基本事件,而(A,B)取值為(1,2)時(shí),l1∥l2,故l1與l2不平行的概率為1-
8.A 解析 設(shè)建設(shè)前經(jīng)濟(jì)收入為 12、1,則建設(shè)后經(jīng)濟(jì)收入為2,建設(shè)前種植收入為0.6,建設(shè)后種植收入為2×0.37=0.74,故A不正確;建設(shè)前的其他收入為0.04,養(yǎng)殖收入為0.3,建設(shè)后其他收入為0.1,養(yǎng)殖收入為0.6,故B,C正確;建設(shè)后養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和所占比例為58%,故D正確,故選A.
9.A 解析 設(shè)P'(x,y).由題意得,t=sin,且P'的縱坐標(biāo)與P的縱坐標(biāo)相同,即y=又P'在函數(shù)y=sin 2x的圖象上,則sin 2x=,故點(diǎn)P'的橫坐標(biāo)x=+kπ或x=+kπ(k∈Z),由題意可得s的最小值為
10.A 解析 令f(x)=0,即xcos x2=0,得x=0或cos x2=0,則x=0或x2= 13、kπ+,x∈Z.
∵x∈[0,2],∴x2∈[0,4],得k的取值為0,即方程f(x)=0有兩個(gè)解,則函數(shù)f(x)=xcos x2在區(qū)間上的零點(diǎn)的個(gè)數(shù)為2,故選A.
11.C 解析 =2,
∴()=2=-2||·||.
又||+||=||=3≥2||·||,
∴()-故答案為-
12.C 解析 由函數(shù)f(x)為奇函數(shù),排除B;當(dāng)0≤x≤π時(shí),f(x)≥0,排除A;
又f'(x)=-2cos2x+cos x+1,令f'(0)=0,則cos x=1或cos x=-,結(jié)合x∈[-π,π],求得f(x)在(0,π]上的極大值點(diǎn)為,靠近π,排除D.
13 解析 因?yàn)閳A(x-2)2+y2= 14、1與x軸的交點(diǎn)坐標(biāo)為(1,0),(3,0),所以c=1,a=3,e=
14 解析 Tk+1=x4-k(-1)kx4-2k(-1)k,令4-2k=0,得k=2,展開式中的常數(shù)項(xiàng)為
15 解析 將正六邊形分割為6個(gè)等邊三角形,
則S6=6
16 解析 在同一平面直角坐標(biāo)系中作出函數(shù)y=x2與y=x的圖象如圖,所圍成的封閉圖形如圖中陰影所示,設(shè)其面積為S.
由故所求面積S=(x-x2)dx=
二、思維提升訓(xùn)練
1.C 解析 A={y|y>0},B={x|-1 15、1)?A,故選D.
3.B 解析 不妨令a=2,b=,則a+=4,,log2(a+b)=log2(log22,log24)=(1,2),即 16、0)的焦點(diǎn)在x軸上,∴其漸近線方程為y=±x.
∵漸近線與直線x+2y+1=0垂直,
∴漸近線的斜率為2,=2,
即b2=4a2,c2-a2=4a2,c2=5a2,
=5,,雙曲線的離心率e=
7.A 解析 容易判斷函數(shù)y=xsin x為偶函數(shù),可排除D;當(dāng)0 17、y=sin 2x(x∈R)的圖象向左平移m(m>0)個(gè)單位可得y=sin 2(x+m)=sin(2x+2m)的圖象,向右平移n(n>0)個(gè)單位可得y=sin 2(x-n)=sin(2x-2n)的圖象.若兩圖象都與函數(shù)y=sin(x∈R)的圖象重合,
則(k1,k2∈Z),
即(k1,k2∈Z).
所以|m-n|=(k1,k2∈Z),當(dāng)k1=k2時(shí),|m-n|min=故選C.
10.A 解析 根據(jù)要求進(jìn)行一一列舉,考慮滿足事件A的情況.兩次數(shù)字分別為(0,0),(0,1),(1,0),(0,2),(2,0),(0,3),(3,0),(1,2),(2,1),(1,3),(3,1),(2,3 18、),(3,2),(1,1),(2,2),(3,3),共有16種情況,其中滿足題設(shè)條件的有(0,0),(0,1),(1,1),(1,0),(2,0),(0,2),共6種情況,所以由古典概型的概率計(jì)算公式可得事件A發(fā)生的概率為P(A)=,故選A.
11.A 解析 如圖,當(dāng)△ABC為正三角形時(shí),A=B=C=60°,取D為BC的中點(diǎn),
,則有=2m,
)=2m,
2,∴m=,故選A.
12.C 解析 設(shè)P(2pt2,2pt),M(x,y)(不妨設(shè)t>0),F,
則
,
∴kOM=,
當(dāng)且僅當(dāng)t=時(shí)等號(hào)成立.
∴(kOM)max=,故選C.
13.4-i 解析 =4-i.
14.±1 解析 如圖,,則四邊形OAMB是銳角為60°的菱形,此時(shí),點(diǎn)O到AB距離為1.由=1,解得k=±1.
15 解析 由題意易知△ABD≌△PBD,∠BAD=∠BPD=∠BCD=30°,AC=2
設(shè)AD=x,則0≤x≤2,CD=2-x,在△ABD中,由余弦定理知BD=設(shè)△PBD中BD邊上的高為d,顯然當(dāng)平面PBD⊥平面CBD時(shí),四面體PBCD的體積最大,
從而VP-BCDd×S△BCD=BC×CD×sin 30°=,
令=t∈[1,2],則VP-BCD,即VP-BCD的最大值為
16.2 解析 ∵Sn=na1+d,=a1+d,
d.
又=3,∴d=2.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版