2022年高考數(shù)學第二輪復(fù)習 專題升級訓(xùn)練14 橢圓、雙曲線、拋物線 文

上傳人:xt****7 文檔編號:106900003 上傳時間:2022-06-14 格式:DOC 頁數(shù):5 大?。?34KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學第二輪復(fù)習 專題升級訓(xùn)練14 橢圓、雙曲線、拋物線 文_第1頁
第1頁 / 共5頁
2022年高考數(shù)學第二輪復(fù)習 專題升級訓(xùn)練14 橢圓、雙曲線、拋物線 文_第2頁
第2頁 / 共5頁
2022年高考數(shù)學第二輪復(fù)習 專題升級訓(xùn)練14 橢圓、雙曲線、拋物線 文_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學第二輪復(fù)習 專題升級訓(xùn)練14 橢圓、雙曲線、拋物線 文》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學第二輪復(fù)習 專題升級訓(xùn)練14 橢圓、雙曲線、拋物線 文(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學第二輪復(fù)習 專題升級訓(xùn)練14 橢圓、雙曲線、拋物線 文 一、選擇題(本大題共6小題,每小題6分,共36分) 1.(xx·安徽安慶二模,2)在同一坐標系下,下列曲線中,右焦點與拋物線y2=4x的焦點重合的是(  ). A.+=1 B.+=1 C.-=1 D.-=1 2.已知圓的方程為x2+y2=4,若拋物線過定點A(0,1),B(0,-1),且以該圓的切線為準線,則拋物線焦點的軌跡方程是(  ). A.+=1(y≠0) B.+=1(y≠0) C.+=1(x≠0) D.+=1(x≠0) 3.若點P為共焦點的橢圓C

2、1和雙曲線C2的一個交點,F(xiàn)1,F(xiàn)2分別是它們的左、右焦點,設(shè)橢圓的離心率為e1,雙曲線的離心率為e2.若·=0,則+=(  ). A.1 B.2 C.3 D.4 4.若直線mx+ny=4與圓x2+y2=4沒有交點,則過點P(m,n)的直線與橢圓+=1的交點個數(shù)為(  ). A.至少1個 B.2個 C.1個 D.0個 5.已知點A,B是雙曲線x2-=1上的兩點,O為坐標原點,且滿足·=0,則點O到直線AB的距離等于(  ). A. B. C.2 D.2 6.(xx·山東濰坊3月

3、模擬,10)直線4kx-4y-k=0與拋物線y2=x交于A,B兩點,若|AB|=4,則弦AB的中點到直線x+=0的距離等于(  ). A. B.2 C. D.4 二、填空題(本大題共3小題,每小題6分,共18分) 7.(xx·江蘇蘇、錫、常、鎮(zhèn)四市調(diào)研,8)已知點M與雙曲線-=1的左,右焦點的距離之比為2∶3,則點M的軌跡方程為__________. 8.已知拋物線y2=2px(p>0)上一點M(1,m),到其焦點的距離為5,雙曲線x2-=1的左頂點為A,若雙曲線的一條漸近線與直線AM垂直,則實數(shù)a=__________. 9.連接拋物線x2=4y

4、的焦點F與點M(1,0)所得的線段與拋物線交于點A,設(shè)點O為坐標原點,則△OAM的面積為__________. 三、解答題(本大題共3小題,共46分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟) 10.(本小題滿分15分)(xx·河北邯鄲一模,20)已知橢圓C:+=1(a>b>0)的短軸長等于焦距,橢圓C上的點到右焦點F的最短距離為-1. (1)求橢圓C的方程; (2)過點E(2,0)且斜率為k(k>0)的直線l與C交于M,N兩點,P是點M關(guān)于x軸的對稱點,證明:N,F(xiàn),P三點共線. 11.(本小題滿分15分)如圖,橢圓C:+=1的焦點在x軸上,左、右頂點分別為A1,A,上頂點為B

5、.拋物線C1,C2分別以A,B為焦點,其頂點均為坐標原點O,C1與C2相交于直線y=x上一點P. (1)求橢圓C及拋物線C1,C2的方程; (2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-,0),求·的最小值. 12.(本小題滿分16分)(xx·安徽安慶二模,20)已知直線l:x+y+8=0,圓O:x2+y2=36(O為坐標原點),橢圓C:+=1(a>b>0)的離心率為e=,直線l被圓O截得的弦長與橢圓的長軸長相等. (1)求橢圓C的方程; (2)過點(3,0)作直線l,與橢圓C交于A,B兩點,設(shè)=+(O是坐標原點),是否存在這樣的直線l,使四邊形OAS

6、B的對角線長相等?若存在,求出直線l的方程;若不存在,說明理由. 參考答案 一、選擇題 1.D 2.C 解析:過點A,B,O(O為坐標原點)分別向拋物線的準線作垂線,垂足為A1,B1,O1,設(shè)拋物線的焦點F(x,y),則|FA|=|AA1|,|FB|=|BB1|, ∴|FA|+|FB|=|AA1|+|BB1|. ∵O為AB的中點, ∴|AA1|+|BB1|=2|OO1|=4. ∴|FA|+|FB|=4,故點F的軌跡是以A,B為焦點的橢圓,其方程為+=1.又F點不能在y軸上,故所求軌跡方程為+=1(x≠0).故選C. 3.B 解析:設(shè)橢圓方程為+=1(a>b>0), 雙曲

7、線方程為-=1(m>0,n>0), 其中兩焦點距離為2c. 不妨令P在第一象限,由題意知 ∴|PF1|=a+m,|PF2|=a-m, 又·=0,∴PF1⊥PF2, ∴|PF1|2+|PF2|2=|F1F2|2, ∴2(a2+m2)=4c2, ∴+==2,故選B. 4.B 解析:∵直線mx+ny=4與圓x2+y2=4沒有交點, ∴圓心到直線的距離d=>2, 解得m2+n2<4, 即點P(m,n)在以原點為圓心,半徑為2的圓的內(nèi)部,而此圓在橢圓+=1的內(nèi)部,故點P在橢圓內(nèi)部,經(jīng)過此點的任意直線與橢圓有兩個交點.故選B. 5.A 解析:由·=0?OA⊥OB,由于雙曲線為中心對

8、稱圖形,因此可考查特殊情況,令點A為直線y=x與雙曲線在第一象限的交點,因此點B為直線y=-x與雙曲線在第四象限的一個交點,因此直線AB與x軸垂直,點O到直線AB的距離就為點A或點B的橫坐標的值. 由?x=.故選A. 6.C 解析:據(jù)拋物線定義知,|AB|=x1++x2+=4, ∴x1+x2=. 故弦AB的中點到x=-的距離為-=+=. 二、填空題 7.x2+y2+26x+25=0 解析:由題意得a2=16,b2=9,c2=16+9=25. ∴F1(-5,0),F(xiàn)2(5,0). 設(shè)M(x,y),有=,即=.整理即可. 8. 解析:根據(jù)拋物線的性質(zhì)得1+=5,∴p=8. 不妨

9、取M(1,4),則AM的斜率為2,由已知得-×2=-1. 故a=. 9.- 解析:線段FM所在直線方程x+y=1與拋物線交于A(x0,y0),則?y0=3-2或y0=3+2(舍去). ∴S△OAM=×1×(3-2)=-. 三、解答題 10.解:(1)由題可知解得a=,c=1,∴b=1. ∴橢圓C的方程為+y2=1. (2)設(shè)直線l為y=k(x-2),M(x1,y1),N(x2,y2),P(x1,-y1),F(xiàn)(1,0), 由得(2k2+1)x2-8k2x+8k2-2=0. 所以x1+x2=,x1x2=. 而=(x2-1,y2)=(x2-1,kx2-2k), =(x1-1,-

10、y1)=(x1-1,-kx1+2k). ∵(x1-1)(kx2-2k)-(x2-1)(-kx1+2k)=k[2x1x2-3(x1+x2)+4]=k=0, ∴∥. ∴N,F(xiàn),P三點共線. 11.解:(1)由題意,A(a,0),B(0,),故拋物線C1的方程可設(shè)為y2=4ax,C2的方程為x2=4y. 由 所以橢圓C:+=1,拋物線C1:y2=16x,拋物線C2:x2=4y. (2)由(1)知,直線OP的斜率為,所以直線l的斜率為-,設(shè)直線l的方程為y=-x+b. 由 消去y,整理得5x2-8bx+(8b2-16)=0, 因為動直線l與橢圓C交于不同兩點, 所以Δ=128b2

11、-20(8b2-16)>0, 解得-<b<. 設(shè)M(x1,y1),N(x2,y2), 則x1+x2=,x1x2=, y1y2==x1x2-(x1+x2)+b2=. 因為=(x1+,y1),=(x2+,y2), 所以·=(x1+,y1)·(x2+,y2)=x1x2+(x1+x2)+y1y2+2=. 因為-<b<, 所以當b=-時,·取得最小值. 其最小值等于×2+×-=-. 12.解:(1)∵圓心O到直線l:x+y+8=0的距離為d==4, 直線l被圓O截得的弦長2a=2=4,∴a=2. 又=,a2-b2=c2,解得b=1,c=. ∴橢圓C的方程為+y2=1. (2)

12、∵=+,∴四邊形OASB是平行四邊形. 假設(shè)存在這樣的直線l,使四邊形OASB的對角線長相等. 則四邊形OASB為矩形,因此有⊥, 設(shè)A(x1,y1),B(x2,y2),則x1x2+y1y2=0. 直線l的斜率顯然存在,設(shè)過點(3,0)的直線l方程為y=k(x-3), 由得(1+4k2)x2-24k2x+36k2-4=0, 由Δ=(-24k2)2-4(1+4k2)(36k2-4)>0, 可得-5k2+1>0,即k2<. x1x2+y1y2=x1x2+k2(x1-3)(x2-3)=(1+k2)x1x2-3k2(x1+x2)+9k2=(1+k2)-3k2+9k2, 由x1x2+y1y2=0得,k2=,∴k=±,滿足Δ>0. 故存在這樣的直線l,其方程為y=±(x-3).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!