遼寧省沈陽市2022-2023學年高中數(shù)學暑假作業(yè) 第二部分 統(tǒng)計 2.1 隨機抽樣與用樣本的頻率分布估計總體的分布

上傳人:xt****7 文檔編號:106976258 上傳時間:2022-06-14 格式:DOC 頁數(shù):6 大?。?52.50KB
收藏 版權申訴 舉報 下載
遼寧省沈陽市2022-2023學年高中數(shù)學暑假作業(yè) 第二部分 統(tǒng)計 2.1 隨機抽樣與用樣本的頻率分布估計總體的分布_第1頁
第1頁 / 共6頁
遼寧省沈陽市2022-2023學年高中數(shù)學暑假作業(yè) 第二部分 統(tǒng)計 2.1 隨機抽樣與用樣本的頻率分布估計總體的分布_第2頁
第2頁 / 共6頁
遼寧省沈陽市2022-2023學年高中數(shù)學暑假作業(yè) 第二部分 統(tǒng)計 2.1 隨機抽樣與用樣本的頻率分布估計總體的分布_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《遼寧省沈陽市2022-2023學年高中數(shù)學暑假作業(yè) 第二部分 統(tǒng)計 2.1 隨機抽樣與用樣本的頻率分布估計總體的分布》由會員分享,可在線閱讀,更多相關《遼寧省沈陽市2022-2023學年高中數(shù)學暑假作業(yè) 第二部分 統(tǒng)計 2.1 隨機抽樣與用樣本的頻率分布估計總體的分布(6頁珍藏版)》請在裝配圖網上搜索。

1、遼寧省沈陽市2022-2023學年高中數(shù)學暑假作業(yè) 第二部分 統(tǒng)計 2.1 隨機抽樣與用樣本的頻率分布估計總體的分布 典型例題: 1.下圖是2015年某市舉辦青少年運動會上,7位裁判為某武術隊員打出的分數(shù)的莖葉圖,左邊數(shù)字表示十位數(shù)字,右邊數(shù)字表示個位數(shù)字. 這些數(shù)據的中位數(shù)是______,去掉一個最低分和最高分后所剩數(shù)據的平均數(shù)是 A. ; B.; C. ; D. ; 2.某企業(yè)共有職工150人,其中高級職稱15人,中級職稱45人,初級職稱90人,現(xiàn)用分層抽樣方法抽取一個容量為30的樣本,則各職稱中抽取的人數(shù)分別為( ) A.5,10,15

2、 B.3,9,18 C.5,9,16 D.3,10,17 3.某校為了解1000名高一新生的身體生長狀況,用系統(tǒng)抽樣法(按等距的規(guī)則)抽取40名同學進行檢查,將學生從進行編號,現(xiàn)已知第18組抽取的號碼為443,則第一組用簡單隨機抽樣抽取的號碼為( ) A.16 B.17 C.18 D.19 4.對一個容量為的總體抽取容量為的樣本,當選取簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣三種不同方法抽取樣本時,總體中每個個體被抽中的概率分別為,則( ) A. B. C. D.

3、 鞏固練習: 1.一個年級有12個班,每個班的同學從1至50排學號,為了交流學習經驗,要求每班學號為14的同學留下進行交流,這里運用的是( ) A.系統(tǒng)抽樣 B.抽簽抽樣 C.隨機抽樣 D.分層抽樣 2.高二某班共有學生56人,座號分別為1,2,3,…,56現(xiàn)根據座號,用系統(tǒng)抽樣的方法,抽取一個容量為4的樣本.已知4號、18號、46號同學在樣本中,那么樣本中還有一個同學的座號是( ) A. B. C. D. 3.為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編

4、號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學生分住在三個營區(qū),從到在第一營區(qū),從到在第二營區(qū),從到在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為( ) A. B. C. D. 4.某學校有初中生人,高中生人,教師人,現(xiàn)采用分層抽樣的方法,從所有師生中抽取一個容量為的樣本進行調查.如果從高中生中抽取人,則樣本容量. 5.某籃球隊甲、乙兩名運動員練習投籃,每人練習10組,每組投籃40個.命中個數(shù)的莖葉圖如下圖,則下面結論中錯誤的一個是() A.甲的極差是29 B.乙的眾數(shù)是21 C.甲的命中率比乙高

5、D.甲的中位數(shù)是24 6.圖1是某縣參加2016年高考的學生身高條形統(tǒng)計圖,從左到右的各條形圖表示學生人數(shù)依次為(如表示身高(單位)在內的人數(shù))圖2是統(tǒng)計圖1中身高在一定范圍內學生人數(shù)的一個算法流程圖,現(xiàn)要統(tǒng)計身高在(含,不含)的學生人數(shù),那么在流程圖中的判斷框內應填寫的條件是( ) A. B. C. D. 7. 某班對一次實驗成績進行分析,利用隨機數(shù)表法抽取樣本時,先將50個同學按01,02,03,…,50進行編號,然后從隨機數(shù)表第9行第11列的數(shù)開始向右讀,則選出的

6、第7個個體是( )(注:表為隨機數(shù)表的第8行和第9行) A. 00 B. 02 C. 13 D. 42 8. 某中學有學生 人,其中一年級 人,二、三年級各 人,現(xiàn)要用抽樣方法抽取 人形成樣本,將學生按一、二、三年級依次統(tǒng)一編號為 , , , ,如果抽得號碼有下列四種情況: ①, , , , , , , , , ; ②, , , , , , , , , ; ③, , , , , , , , , ; ④, , , , , , , , , ; 其中可能是由分層抽樣得到,而不可能是由系統(tǒng)抽樣得到的一組號碼為

7、 A. ①② B. ②③ C. ①③ D. ①④ 9. 下列說法中錯誤的是( ) A. 總體中的個體數(shù)不多時宜用簡單隨機抽樣 B. 系統(tǒng)抽樣過程中,在總體均分后的每一部分中抽取一個個體,得到所需樣本 C. 百貨商場的抓獎活動是抽簽法 D. 整個抽樣過程中,每個個體被抽取的概率相等(有剔除時例外) 10. 某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機對該市18~68歲的人群抽取一個容量為的樣本,并將樣本數(shù)據分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,……,第

8、5組,繪制了樣本的頻率分布直方圖:并對回答問題情況進行統(tǒng)計后,結果如下表所示. 組號 分組 回答正確的人數(shù) 回答正確的人數(shù)占本組的比例 第1組 [18,28) 5 0. 5 第2組 [28,38) 18 第3組 [38,48) 27 0.9 第4組 [48,58) x 0.36 第5組 [58,68) 3 0.2 (1)分別求出的值; (2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應各抽取多少人? (3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1

9、人獲得幸運獎的概率. 必修三第二部分統(tǒng)計 2.1隨機抽樣與用樣本的頻率分布估計總體的分布 典型例題: 1.C【解析】試題分析:中位數(shù)為由小到大排列后位于中間的數(shù),即為88,平均數(shù)為 考點:莖葉圖與中位數(shù)平均數(shù) 2. B【解析】試題分析:由分層抽樣抽取比例可知抽取的人數(shù)依次為: 考點:分層抽樣 3. C【解析】試題分析:第一組用簡單隨機抽樣抽取的號碼為,選C 考點:系統(tǒng)抽樣法 4. D【解析】試題分析:根據隨機抽樣的性質可知,,故選D. 考點:隨機抽樣. 鞏固練習: 1. A【解析】試題分析:當總體容量較大時,采用系統(tǒng)抽樣.將總體分段,分段的間隔要求

10、相等,這時間隔一般為預先制定的,在第段內采用簡單隨機抽樣確定一個起始編號,在此編號的基礎上加上分段間隔的整倍數(shù)即為抽樣編號.本題中,把每個班級學生從到號編排,要求每班編號為的同學留下進行交流,這樣選出的樣本是采用系統(tǒng)抽樣的方法,故選A. 考點:系統(tǒng)抽樣方法. 2. C【解析】 試題分析:系統(tǒng)抽樣抽取的數(shù)據構成等差數(shù)列,由4號、18號、46號同學在樣本中可知樣本中還有一個同學的座號是32 考點:系統(tǒng)抽樣 3. B【解析】 試題分析:依題意可知,在隨機抽樣中,首次抽到005號,以后每隔10個號抽到一個人,∴抽取的號碼構成以5為首項,d=10為公差的等差數(shù)列. ∴an=10n-5.由1

11、0n-5≤155解得n≤16,即第一營區(qū)抽中的人數(shù)為16人. 由156<10n-5≤255,即n=17,18,…26,共有26-17+1=10人,即第二營區(qū)抽中的人數(shù)為10人.則第三營區(qū)的人數(shù)為40-16-10=14人 考點:系統(tǒng)抽樣方法 4. 【答案】148 5. D【解析】試題分析:A中極差為37-8=29;B中乙的眾數(shù)為21;C中甲的平均數(shù)大,所以命中率高;D中甲的中位數(shù)為23 考點:莖葉圖 6. C【解析】試題分析:其運行如下:條件成立,;條件成立;條件成立;條件成立,;條件不成立,結束循環(huán).四選項中,僅C滿足條件.故選C. 考點:算法初步. 7. B【解析】由隨機數(shù)表

12、的讀法可得,所讀的數(shù)依次為: 07 42 44 38 15 13 02即選出的第7個個體是02. 8. D【解析】先考慮那種情況為分層抽樣,分層抽樣需按年級分成三層,一年級抽4個人,二三年級個抽3個人,也即1到108號抽4個,109到189號抽3個,190到270號抽3個,可判斷①②④是分層抽樣, 在判斷①②④中那幾個是系統(tǒng)抽樣,系統(tǒng)抽樣需把1到270號分成均與的10部分,每部分按事先約定好的方法抽取1個,則②為系統(tǒng)抽樣。 9. D【解析】系統(tǒng)抽樣無論有無剔除都是等幾率抽樣,即概率相等,D錯,故選D.點睛:簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣中每個個體被

13、抽到的概率都相等,沒有例外 10. 【答案】(1), , ;(2)2人,3人,1人;(3). 【解析】試題分析:(1)由回答正確的人數(shù)/每組的人數(shù)=回答正確的人數(shù)占本組的比例,分別可求得要求的值;(2)由分層抽樣按比例抽取的特點可得各組的人數(shù);(3)記抽取 人中,第二組的記為 ,第三組的記為 ,第四組的記為 ,列舉可得從名學生中任取 名的所有可能的情況,以及其中第二組的至少有 人的情況種數(shù),由古典概型可得概率. 試題解析:(1)第1組人數(shù),所以 第2組頻率為:0.2,人數(shù)為: ,所以 第4組人數(shù),所以, (2)第2,3,4組回答正確的人的比為18:27:9=2:3:1,所以第2,3,4組每組應各依次抽取2人,3人,1人. (3)記 “所抽取的人中第2組至少有1人獲得幸運獎”為事件A,抽取的6人中,第2組的設為,第3組的設為,第4組的設為,則從6名幸運者中任取2名的所有可能的情況有15種,它們是: , , , . 其中第2組至少有1人的情況有9種,他們是: . ∴.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!