(京津?qū)S茫?022高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練8 概率 理

上傳人:xt****7 文檔編號:106977637 上傳時間:2022-06-14 格式:DOC 頁數(shù):7 大?。?5.50KB
收藏 版權(quán)申訴 舉報 下載
(京津?qū)S茫?022高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練8 概率 理_第1頁
第1頁 / 共7頁
(京津?qū)S茫?022高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練8 概率 理_第2頁
第2頁 / 共7頁
(京津?qū)S茫?022高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練8 概率 理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(京津?qū)S茫?022高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練8 概率 理》由會員分享,可在線閱讀,更多相關(guān)《(京津?qū)S茫?022高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練8 概率 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、(京津?qū)S茫?022高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練8 概率 理 1.(2018·大同模擬)把一枚質(zhì)地均勻、半徑為1的圓形硬幣平放在一個邊長為8的正方形托盤上,則該硬幣完全落在托盤上(即沒有任何部分在托盤以外)的概率為(  ) A. B. C. D. 答案 A 解析 如圖,要使硬幣完全落在托盤上,則硬幣圓心在托盤內(nèi)以6為邊長的正方形內(nèi),硬幣在托盤上且沒有掉下去,則硬幣圓心在托盤內(nèi),由測度比為面積比可得,硬幣完全落在托盤上的概率為P==. 2.(2018·南陽模擬)甲、乙、丙、丁、戊五位同學(xué)站成一排照相留念,則在甲乙相鄰的條件下,甲丙也相鄰的概率為(  ) A.

2、B. C. D. 答案 D 解析 甲乙相鄰的排隊順序共有2A=48(種), 其中甲乙相鄰,甲丙相鄰的排隊順序共有2A=12(種), 所以甲乙相鄰的條件下,甲丙相鄰的概率為=. 3.(2018·大連模擬)某工廠生產(chǎn)的一種零件的尺寸(單位:mm)服從正態(tài)分布N.現(xiàn)從該零件的生產(chǎn)線上隨機(jī)抽取20 000件零件,其中尺寸在(500,505]內(nèi)的零件估計有(  ) (附:若隨機(jī)變量X服從正態(tài)分布N,則P≈0.682 6,P≈0.954 4) A.6 826個 B.9 545個 C.13 654個 D.19 090個 答案 A 解析 由P≈0.682 6, 得P≈0.341

3、 3, 因此尺寸在內(nèi)的零件估計有0.341 3×20 000=6 826(個). 4.拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面向上和反面向上的概率都為.構(gòu)造數(shù)列{an},使an= 記Sn=a1+a2+…+an,則S2≠0且S8=2時的概率為(  ) A. B. C. D. 答案 C 解析 由題意知,當(dāng)S8=2時,說明拋擲8次,其中有5次正面向上,3次反面向上,又因為S2≠0,所以有兩種情況:①前2次都正面向上,后6次中有3次正面向上,3次反面向上;②前2次都反面向上,后6次中有5次正面向上,1次反面向上,所以S2≠0且S8=2時的概率為P=2C·33+2C51=, 故選C. 5.

4、(2018·江西省景德鎮(zhèn)市第一中學(xué)等盟校聯(lián)考)下圖是2002年8月中國成功主辦的國際數(shù)學(xué)家大會的會標(biāo),是我們古代數(shù)學(xué)家趙爽為證明勾股定理而繪制的,在我國最早的數(shù)學(xué)著作《周髀算經(jīng)》中有詳細(xì)的記載.若圖中大正方形的邊長為5,小正方形的邊長為2,現(xiàn)作出小正方形的內(nèi)切圓,向大正方形所在區(qū)域模擬隨機(jī)投擲n個點,有m個點落在中間的圓內(nèi),由此可估計π的近似值為(  ) A. B. C. D. 答案 D 解析 ∵小正方形的邊長為2, ∴圓的半徑為1,圓的面積為π, 又∵大正方形的邊長為5,∴大正方形的面積為25, ∴由幾何概型概率公式可得≈,π≈. 6.某校高三年級共有6個班,現(xiàn)在安排

5、6名教師擔(dān)任某次模擬考試的監(jiān)考工作,每名教師監(jiān)考一個班級.在6名教師中,甲為其中2個班的任課教師,乙為剩下4個班中2個班的任課教師,其余4名教師均不是這6個班的任課教師,那么監(jiān)考教師都不但任自己所教班的監(jiān)考工作的概率為(  ) A. B. C. D. 答案 A 解析 對6名教師進(jìn)行隨機(jī)安排,共有A種安排方法.其中監(jiān)考教師都不擔(dān)任自己所教班的監(jiān)考工作時,先安排教師甲,當(dāng)甲擔(dān)任教師乙所教的兩個班中的一班的監(jiān)考工作時,教師乙有4種安排方法,其余4名教師可以任意安排,共有CCA種安排方法;當(dāng)甲擔(dān)任甲和乙都不教的兩個班級中的一個班的監(jiān)考工作時,教師乙有3種安排方法,其余4名教師可以任意安排,

6、共有CCA種安排方法,因此監(jiān)考教師都不擔(dān)任自己所教的班級的監(jiān)考工作的安排方法總數(shù)為CCA+CCA=14A,故所求概率P===. 7.依次連接正六邊形各邊的中點,得到一個小正六邊形,再依次連接這個小正六邊形各邊的中點,得到一個更小的正六邊形,往原正六邊形內(nèi)隨機(jī)撒一粒種子,則種子落在最小的正六邊形內(nèi)的概率為(  ) A. B. C. D. 答案 B 解析 如圖,原正六邊形為ABCDEF,最小的正六邊形為A1B1C1D1E1F1.設(shè)AB=a,由已知得∠AOB=60°, 則OA=a,∠AOM=30°,則OM=OAcos∠AOM=a·cos 30°=,即中間的正六邊形的邊長為;以此類

7、推,最小的正六邊形A1B1C1D1E1F1的邊長為OB1=OM=·=,所以由幾何概型得,種子落在最小的正六邊形內(nèi)的概率為P===,故選B. 8.(2018·濰坊模擬)交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通6座以下私家車投保交強(qiáng)險的基準(zhǔn)保費為a元,在下一年續(xù)保時,實行費率浮動機(jī)制,保費與車輛發(fā)生道路交通事故出險的情況下聯(lián)系,最終保費=基準(zhǔn)保費×(1+與道路交通事故相聯(lián)系的浮動比率),具體情況如下表: 交強(qiáng)險浮動因素和浮動費率比率表 類別 浮動因素 浮動比率 A1 上一個年度未發(fā)生有責(zé)任道路交通事故 下浮10% A2 上兩個年度未發(fā)生有責(zé)任道路交通事故 下浮20% A3

8、 上三個及以上年度未發(fā)生有責(zé)任道路交通事故 下浮30% A4 上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 0% A5 上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 上浮10% A6 上一個年度發(fā)生有責(zé)任道路交通死亡事故 上浮30% 為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了100輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計如下表: 類型 A1 A2 A3 A4 A5 A6 數(shù)量 20 10 10 38 20 2 若以這100輛該品牌的投保類型的頻率代替一輛車投保類型的概率,則隨機(jī)抽取一輛該品牌車在

9、第四年續(xù)保時的費用的期望為(  ) A.a(chǎn)元 B.0.958a元 C.0.957a元 D.0.956a元 答案 D 解析 由題意可知,一輛該品牌車在第四年續(xù)保時的費用X的可能取值有0.9a,0.8a,0.7a,a,1.1a,1.3a,且對應(yīng)的概率分別為P(X=0.9a)==0.2,P(X=0.8a)==0.1,P(X=0.7a)==0.1,P(X=a)==0.38,P(X=1.1a)==0.2,P(X=1.3a)==0.02,利用離散型隨機(jī)變量的分布列的期望公式可以求得E(X)=0.9a×0.2+0.8a×0.1+0.7a×0.1+a×0.38+1.1a×0.2+1.3a×0.

10、02=0.956a,故選D. 9.(2018·煙臺模擬)若20件產(chǎn)品中有16件一級品,4件二級品.從中任取2件,這2件中至少有1件二級品的概率是________. 答案  解析 由題意,由組合數(shù)公式求得從20件產(chǎn)品中任取2件的情況總數(shù)為C=190, 其中恰有一件二級品和全為二級品的種數(shù)為CC+C=70, 即至少有1件二級品的種數(shù)為70. 由古典概型的概率計算公式可得概率為P==. 10.(2018·重慶模擬)已知隨機(jī)變量X~N,若P(X≤1-a)+P(X≤1+2a)=1,則實數(shù)a=________. 答案 2 解析 因為P+P=1, 所以P=1-P=P, 因為X~N,所以

11、1+2a+1-a=2×2,所以a=2. 11.已知隨機(jī)變量X的分布列如下表: X a 2 3 4 P b 若E(X)=2,則a=________;D(X)=________. 答案 0  解析 由題意得+b++=1, ∴b=. ∴E(X)=a×+2×+3×+4×=2, 解得a=0. ∴D(X)=(0-2)2·+(2-2)2·+(3-2)2·+(4-2)2·=. 12.(2018·吉林調(diào)研)某校高三年級學(xué)生一次數(shù)學(xué)診斷考試成績(單位:分)X服從正態(tài)分布 N,從中抽取一個同學(xué)的數(shù)學(xué)成績ξ,記該同學(xué)的成績90<ξ≤110為事件A,記該同學(xué)的

12、成績80<ξ≤100為事件B,則在A事件發(fā)生的條件下B事件發(fā)生的概率P(B|A)=_____.(結(jié)果用分?jǐn)?shù)表示) 附:X滿足:P(μ-σ

13、相對的情況有2種,擺法分別是正反正反,反正反正,所以相鄰兩枚硬幣中至少有一組同一面不相對的擺法共有16-2=14(種),所以概率為P==. 14.(2018·欽州質(zhì)檢)甲、乙兩人約定在早上7:00至7:15之間到某公交站搭乘公交車去上學(xué),已知在這段時間內(nèi),共有2班公交車到達(dá)該站,到站的時間分別為7:05,7:15,如果他們約定見車就搭乘,則甲和乙恰好能搭乘同一班公交車去上學(xué)的概率為________. 答案  解析 如圖,設(shè)甲到達(dá)汽車站的時刻為x,乙到達(dá)汽車站的時刻為y, 則0≤x≤15,0≤y≤15, 甲、乙兩人到達(dá)汽車站的時刻(x,y)所對應(yīng)的區(qū)域在平面直角坐標(biāo)系中畫出(如圖 所示)是大正方形.將2班車到站的時刻在圖形中畫出,則甲、乙兩人要想乘同一班車, 必須滿足, 即(x,y)必須落在圖形中的2個帶陰影的正方形內(nèi), 所以由幾何概型的計算公式得P==.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!