(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第14講 導(dǎo)數(shù)的概念及運算導(dǎo)學(xué)案 新人教A版

上傳人:彩*** 文檔編號:106989190 上傳時間:2022-06-14 格式:DOCX 頁數(shù):13 大?。?.35MB
收藏 版權(quán)申訴 舉報 下載
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第14講 導(dǎo)數(shù)的概念及運算導(dǎo)學(xué)案 新人教A版_第1頁
第1頁 / 共13頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第14講 導(dǎo)數(shù)的概念及運算導(dǎo)學(xué)案 新人教A版_第2頁
第2頁 / 共13頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第14講 導(dǎo)數(shù)的概念及運算導(dǎo)學(xué)案 新人教A版_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第14講 導(dǎo)數(shù)的概念及運算導(dǎo)學(xué)案 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第14講 導(dǎo)數(shù)的概念及運算導(dǎo)學(xué)案 新人教A版(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第三章 導(dǎo)數(shù)及其應(yīng)用 [知識體系p37] 第14講 導(dǎo)數(shù)的概念及運算 【課程要求】 1.了解導(dǎo)數(shù)概念的實際背景. 2.理解導(dǎo)數(shù)的意義及幾何意義. 3.能根據(jù)導(dǎo)數(shù)定義求函數(shù)y=C(C為常數(shù)),y=x,y=x2,y=x3,y=,y=的導(dǎo)數(shù). 4.能利用基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)運算法則進行某些函數(shù)的求導(dǎo). 對應(yīng)學(xué)生用書p37 【基礎(chǔ)檢測】 1.判斷下面結(jié)論是否正確(請在括號中打“√”或“×”) (1)f′(x0)與[f(x0)]′表示的意義相同.(  ) (2)f′(x0)是導(dǎo)函數(shù)f′(x)在x=x0處的函數(shù)值.(  ) (3)曲線的切線不一定與曲線只

2、有一個公共點.(  ) (4)因為(lnx)′=,所以′=lnx.(  ) (5)y=cos3x由函數(shù)y=cosu,u=3x復(fù)合而成.(  ) [答案] (1)× (2)√ (3)√ (4)× (5)√                    2.[選修2-2p11B組T1]—個物體的運動方程為s=1-t+t2,其中s的單位是米,t的單位是秒,那么物體在5秒末的瞬時速度是(  ) A.6米/秒B.7米/秒C.8米/秒D.9米/秒 [解析]物體的運動方程為s=1-t+t2, s′=-1+2t,s′|t=5=9. [答案]D 3.[選修2-2p18練習(xí)T2]下列求導(dǎo)運算正確

3、的是(  ) A.′=1+B.(log2x)′= C.(3x)′=3xlog3eD.(x2cosx)′=-2sinx [解析]′=x′+′=1-;(3x)′=3xln3;(x2cosx)′=(x2)′cosx+x2(cosx)′=2xcosx-x2sinx. [答案]B 4.[選修2-2p18A組T7]曲線y=在點M處的切線方程為__________. [解析]由已知y′==-,所以曲線y=在點M處的切線方程為y=-,即x+πy-π=0. [答案]x+πy-π=0 5.已知直線y=-x+1是函數(shù)f(x)=-·ex圖象的切線,則實數(shù)a=__________. [解析]設(shè)切點

4、為(x0,y0),則f′(x0)=-·ex0=-1, ∴ex0=a,又-·ex0=-x0+1, ∴x0=2,a=e2. [答案]e2 6.若函數(shù)f(x)=f′(1)ex-1-f(0)x+x2,則f′(1)=________. [解析]f′(x)=f′(1)ex-1-f(0)+2x,則f′(1)=f′(1)-f(0)+2,所以f(0)=2,故f(x)=f′(1)ex-1-2x+x2,則有f(0)=f′(1)e-1,解得f′(1)=2e. [答案]2e 【知識要點】 1.平均變化率及瞬時變化率及導(dǎo)數(shù)的概念 (1)函數(shù)y=f(x)從x1到x2的平均變化率用____表示,且=. (

5、2)函數(shù)y=f(x)在x=x0處的瞬時變化率=為函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù),記作f′(x0)或y′|x=x0,即f′(x0)==. (3)函數(shù)f(x)的導(dǎo)函數(shù): 稱函數(shù)f′(x)=__lim____為f(x)的導(dǎo)函數(shù). (4)導(dǎo)數(shù)的幾何意義和物理意義 幾何意義:函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)就是曲線y=f(x)上__點(x0,f(x0))處切線__的斜率k,即k=__f′(x0)__;切線方程為__y-f(x0)=f′(x0)(x-x0)__. 物理意義:若物體位移隨時間變化的關(guān)系為s=f(t),則f′(t0)是物體運動在t=t0時刻的__瞬時速度__. 2.基本初等函

6、數(shù)的導(dǎo)數(shù)公式 原函數(shù) 導(dǎo)函數(shù) f(x)=xn(n∈Q*) f′(x)=__n·xn-1__ f(x)=sinx f′(x)=__cos__x__ f(x)=cosx f′(x)=__-sin__x__ f(x)=ax(a>0) f′(x)=__axln__a__ f(x)=ex f′(x)=__ex__ f(x)=logax(a>0,且a≠1) f′(x)=____ f(x)=lnx f′(x)=____ 3.導(dǎo)數(shù)的運算法則 (1)[f(x)±g(x)]′=__f′(x)±g′(x)__; (2)[f(x)·g(x)]′=__f′(x)·g(x)+f(x)

7、·g′(x)__; (3)′=__(g(x)≠0)__. 4.復(fù)合函數(shù)的導(dǎo)數(shù) (1)對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這兩個函數(shù)(函數(shù)y=f(u)和u=g(x))的復(fù)合函數(shù)為y=f(g(x)). (2)復(fù)合函數(shù)y=f(g(x))的導(dǎo)數(shù)和函數(shù)y=f(u),u=g(x)的導(dǎo)數(shù)間的關(guān)系為__y′x=y(tǒng)′u·u′x__,即y對x的導(dǎo)數(shù)等于y對u的導(dǎo)數(shù)與u對x的導(dǎo)數(shù)的乘積. 對應(yīng)學(xué)生用書p38 導(dǎo)數(shù)的運算法則及應(yīng)用 例1 求下列函數(shù)的導(dǎo)數(shù): (1)y=(3x2-4x)(2x+1); (2)y=3xex-2x+e; (3)y=.

8、[解析] (1)∵y=(3x2-4x)(2x+1)=6x3+3x2-8x2-4x=6x3-5x2-4x, ∴y′=18x2-10x-4. (2)y′=(3xex)′-(2x)′+e′=(3x)′ex+3x(ex)′-(2x)′ =3xexln3+3xex-2xln2 =(ln3+1)·(3e)x-2xln2. (3)y′== =. [小結(jié)]1.應(yīng)用基本初等函數(shù)的導(dǎo)數(shù)公式進行導(dǎo)數(shù)計算時應(yīng)注意:①公式(xn)′=nxn-1中,n為有理數(shù);②公式(ax)′=axlna,(logax)′=與(ex)′=ex,(lnx)′=,清楚地區(qū)分和熟記. 2.求導(dǎo)之前,應(yīng)利用代數(shù)、三角恒等式等變形

9、對函數(shù)進行化簡,然后求導(dǎo),這樣可以減少運算量,提高運算速度,減少差錯;遇到函數(shù)的商的形式時,如能化簡則化簡,這樣可避免使用商的求導(dǎo)法則,減少運算量. 1.求下列函數(shù)的導(dǎo)數(shù): (1)y=x2sinx; (2)y=. [解析] (1)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx. (2)y′=′==-. 復(fù)合函數(shù)的導(dǎo)數(shù) 例2 求下列函數(shù)的導(dǎo)數(shù): (1)y=; (2)y=xsincos; (3)y=x. [解析] (1)設(shè)u=1-3x,則y=u-4, ∴y′x=y(tǒng)′u·u′x=(u-4)′u·(1-3x)′x=-4u-5·(-3)=12u-5=

10、. (2)∵y=xsincos=xsin(4x+π)=-xsin4x, ∴y′=-sin4x-x·4cos4x=-sin4x-2xcos4x. (3)y′=(x)′=x′·+x·()′=+=. [小結(jié)]1.掌握求復(fù)合函數(shù)的導(dǎo)數(shù)一般步驟:(1)分清復(fù)合關(guān)系,適當(dāng)選定中間變量,正確分解關(guān)系;(2)分層求導(dǎo),弄清每一步中是哪個變量對哪個變量求導(dǎo)數(shù). 2.復(fù)合函數(shù)的導(dǎo)數(shù)計算關(guān)鍵是聯(lián)想基本初等函數(shù),準(zhǔn)確地通過中間量對復(fù)合函數(shù)進行分拆,同時最后結(jié)果是關(guān)于x的函數(shù)解析式. 2.求下列函數(shù)的導(dǎo)數(shù): (1)y=(2x+1)5; (2)y=sin2. [解析] (1)設(shè)u=2x+1,則y=u

11、5, ∴y′=y(tǒng)′u·u′x=(u5)′u·(2x+1)′x=5u4·2=5(2x+1)4·2=10(2x+1)4. (2)y′=′=2sin·′=2sin·cos·′ =2sin·cos·2=2sin. 導(dǎo)數(shù)運算的應(yīng)用 例3 (1)若函數(shù)f(x)在R上可導(dǎo),f(x)=exlnx+x3f′(1),則f′(1)=__________. [解析]由已知可得f′(x)=ex+3x2f′(1), 故f′(1)=e+3f′(1),解得f′(1)=-. [答案]- (2)已知f(x)=x2+sin,f′(x)為f(x)的導(dǎo)函數(shù),則f′(x)的圖象是(  ) [解析]∵f(x)=

12、x2+sin=x2+cosx,∴f′(x)=x-sinx,它是一個奇函數(shù),其圖象關(guān)于原點對稱,故排除B,D.又f″(x)=-cosx,當(dāng)-<x<時,cosx>, ∴f″(x)<0,故函數(shù)y=f′(x)在區(qū)間上單調(diào)遞減,故排除C,選A. [答案]A [小結(jié)]導(dǎo)數(shù)的運算是所有導(dǎo)數(shù)問題的基礎(chǔ),高考中直接考查導(dǎo)數(shù)運算的題目較少,但凡是涉及導(dǎo)數(shù)的問題不用計算導(dǎo)數(shù)的也極其罕見.因此,必須牢牢掌握導(dǎo)數(shù)的運算法則. 3.已知函數(shù)f(x)=(x2+2)(ax2+b),且f′(1)=2,則f′(-1)=(  )                    A.-1B.-2 C.2D.0 [解析]

13、f(x)=(x2+2)(ax2+b)=ax4+(2a+b)x2+2b,f′(x)=4ax3+2(2a+b)x為奇函數(shù),所以f′(-1)=-f′(1)=-2. [答案]B 4.已知f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),且對任意的實數(shù)x都有f′(x)=ex(2x-2)+f(x),f(0)=1,則(  ) A.f(x)=ex(x+1) B.f(x)=ex(x-1) C.f(x)=ex(x+1)2D.f(x)=ex(x-1)2 [解析]令G(x)=,則G′(x)==2x-2, 可設(shè)G(x)=x2-2x+c, ∵G(0)=f(0)=1.∴c=1. ∴f(x)=(x2-2x+1)ex=ex(

14、x-1)2. [答案]D 導(dǎo)數(shù)的幾何意義 例4 (1)曲線f(x)=x3-x+3在點P處的切線平行于直線y=2x-1,則P點的坐標(biāo)為(  ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) [解析]f′(x)=3x2-1,令f′(x)=2,則3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),經(jīng)檢驗,點(1,3),(-1,3)均不在直線y=2x-1上,故選C. [答案]C (2)已知f(x)=lnx,g(x)=x2+mx+(m<0),直線l與函數(shù)f(x),g(x)的圖象都相切,且與f(x)圖象的切點為(1,f(1)),則m的

15、值為(  ) A.-1B.-3C.-4D.-2 [解析]∵f′(x)=,∴直線l的斜率為k=f′(1)=1, 又f(1)=0,∴切線l的方程為y=x-1. ∵g′(x)=x+m,設(shè)直線l與g(x)的圖象的切點為(x0,y0), 則有解得m=-2. [答案]D [小結(jié)]1.導(dǎo)數(shù)幾何意義基本題型:(1)是求曲線的切線方程,其關(guān)鍵是理解導(dǎo)數(shù)的幾何意義,并能準(zhǔn)確求導(dǎo);(2)是求切點坐標(biāo),其思路是先求函數(shù)的導(dǎo)數(shù),然后讓導(dǎo)數(shù)值等于切線的斜率,從而得出切線方程或求出切點坐標(biāo); (3)是求參數(shù)的值(范圍),其關(guān)鍵是列出函數(shù)的導(dǎo)數(shù)等于切線斜率的方程. 2.解決此類問題的先決條件是應(yīng)先正確求導(dǎo),再

16、根據(jù)其他條件求解,求曲線的切線應(yīng)注意: (1)“過點A的曲線的切線方程”與“在點A處的切線方程”是不相同的,后者A必為切點,前者未必是切點; (2)曲線在某點處的切線若有則只有一條,曲線過某點的切線往往不止一條;切線與曲線的公共點不一定只有一個. 5.設(shè)曲線y=在點處的切線與直線x-ay+1=0平行,則實數(shù)a=__________. [解析]因為y′=,所以y′|x==-1,由條件知=-1,所以a=-1. [答案]-1 6.函數(shù)g(x)=x3+x2+3lnx+b(b∈R)在x=1處的切線過點(0,-5),則b的值為(  ) A.B.C.D. [解析]當(dāng)x=1時,g(1)=1+

17、+b=+b,又g′(x)=3x2+5x+, 所以切線斜率k=g′(1)=3+5+3=11,從而切線方程為y=11x-5, 由于點在切線上,所以+b=11-5,解得b=.故選B. [答案]B 導(dǎo)數(shù)的幾何意義的綜合應(yīng)用 例5 已知f=ln(x+m),g=ex. (1)m=2時,證明:f

18、(x)在(-2,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增,從而F(x)的最小值為F=ea-ln=+a=>0. 所以F(x)≥F(a)>0,即g(x)>f(x). 法二:ex≥x+1≥ln(x+2),注意兩個等號成立條件不一致; (2)f′=,故f′=, 故切線l的方程為y=-+ln(x0+m),① 設(shè)直線l與g(x)相切于點(x1,ex1),注意到g′=ex,從而切線斜率為ex1=,因此x1=-ln(x0+m), 而g=ex1=,從而直線l的方程也為y=++,② 由①②可知+=+ln(x0+m), 故ln=x0+1,由m為正整數(shù)可知,x0+m-1>0,因此解得ln=,0

19、1, 構(gòu)造函數(shù)h=ln-(00, 當(dāng)m=1時,h=ln-為單調(diào)遞增函數(shù),且h=ln2-2<0,從而h(x)在(0,1)上無零點; 當(dāng)m>1時,要使得h在(0,1)上存在零點,則只需h=lnm-<0,h=ln->0, 由h1=lnm-為單調(diào)遞增函數(shù),且h1=ln3->0,因此m<3; 由h2(m)=ln-為單調(diào)遞增函數(shù),且h2=ln2-2<0,因此m>1; 由于m為正整數(shù),且1

20、上. 7.已知函數(shù)f=e2x,a∈R. (1)當(dāng)a=4時,求證:過點P有三條直線與曲線y=f相切; (2)當(dāng)x≤0時,f+1≥0,求實數(shù)a的取值范圍. [解析] (1)當(dāng)a=4時,f=e2x,f′=4e2x. 設(shè)過點P的直線與曲線y=f相切于點, 則切線方程為y-f=f′, 將點P代入得-f=f′, 即-e2x0=4e2x0, 又e2x0>0,得8x-14x0+1=0,令g=8x3-14x+1, g′=24x2-14=24, 所以函數(shù)g在區(qū)間上單調(diào)遞增, 在區(qū)間上單調(diào)遞減, 在區(qū)間上單調(diào)遞增, 且g=-35<0,g=1>0,g=-5<0,g=37>0, 所以g

21、=8x3-14x+1在區(qū)間,,上均有一個零點, 故過點P有三條直線與曲線y=f相切. (2)因為當(dāng)x≤0時,f+1≥0, 即當(dāng)x≤0時,e2x≥-1, 所以當(dāng)x≤0時,ax2+2x-1+≥0, 設(shè)h=ax2+2x-1+, 則h′=2ax+2-=2, 設(shè)m=ax+1-,則m′=a+. ①當(dāng)a≥-2時,由x≤0得≥2,從而m′≥0,(當(dāng)且僅當(dāng)x=0時等號成立),所以m=ax+1-在區(qū)間上單調(diào)遞增,又m=0,所以當(dāng)x≤0時,m≤0,從而當(dāng)x≤0時,h′≤0,所以h=ax2+2x-1+在區(qū)間上單調(diào)遞減,又h=0,所以當(dāng)x≤0時,h≥0,即ax2+2x-1+≥0, 所以當(dāng)x≤0時,f+

22、1≥0; ②當(dāng)a<-2時,令m′=0,得a+=0, ∴x=ln<0, 故當(dāng)x∈時,m′=<0, ∴m=ax+1-在上單調(diào)遞減, 又∵m=0,∴當(dāng)x∈時,m≥0, 從而當(dāng)x∈時,h′≥0, ∴h=ax2+2x-1+在上單調(diào)遞增,又∵h=0, 從而當(dāng)x∈時,h<0,即ax2+2x-1+<0, 于是當(dāng)x∈時,f+1<0, 綜合得a的取值范圍是. 對應(yīng)學(xué)生用書p40 1.(2019·全國卷Ⅰ理)曲線y=3(x2+x)ex在點(0,0)處的切線方程為________________. [解析]y′=3(2x+1)ex+3(x2+x)ex=3(x2+3x+1)ex, 所以切

23、線的斜率k=y(tǒng)′|x=0=3, 則曲線y=3(x2+x)ex在點(0,0)處的切線方程為y=3x,即3x-y=0. [答案]3x-y=0 2.(2019·全國卷Ⅱ理)已知函數(shù)f=lnx-. (1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點; (2)設(shè)x0是f(x)的一個零點,證明曲線y=lnx在點A(x0,lnx0)處的切線也是曲線y=ex的切線. [解析] (1)f(x)的定義域為(0,1)∪(1,+∞). 因為f′(x)=+>0, 所以f(x)在(0,1),(1,+∞)單調(diào)遞增. 因為f(e)=1-<0,f(e2)=2-=>0, 所以f(x)在(1,+∞)有唯一零點x1,即f(x1)=0. 又0<<1,f=-lnx1+=-f(x1)=0, 故f(x)在(0,1)有唯一零點. 綜上,f(x)有且僅有兩個零點. (2)因為=e-lnx0,故點B在曲線y=ex上. 由題設(shè)知f(x0)=0,即lnx0=, 故直線AB的斜率k===. 曲線y=ex在點B處切線的斜率是,曲線y=lnx在點A(x0,lnx0)處切線的斜率也是, 所以曲線y=lnx在點A(x0,lnx0)處的切線也是曲線y=ex的切線. 13

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!