2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 第4講 數(shù)列學(xué)案
《2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 第4講 數(shù)列學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 第4講 數(shù)列學(xué)案(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第4講數(shù)列 1.等差、等比數(shù)列基本運(yùn)算和性質(zhì)的考查是高考熱點(diǎn),經(jīng)常以小題形式出現(xiàn); 2.?dāng)?shù)列的通項(xiàng)也是高考熱點(diǎn),常在解答題中的第(1)問(wèn)出現(xiàn),難度中檔以下. 3.高考對(duì)數(shù)列求和的考查主要以解答題的形式出現(xiàn),通過(guò)分組轉(zhuǎn)化、錯(cuò)位相減、裂項(xiàng)相消等方法求數(shù)列的和,難度中檔偏下. 1.等差數(shù)列 (1)通項(xiàng)公式:an=a1+(n-1)d; (2)求和公式:Sn==na1+d; (3)性質(zhì): ①若m,n,p,q∈N*,且m+n=p+q,則am+an=ap+aq; ②an=am+(n-m)d; ③Sm,S2m-Sm,S3m-S2m,…,成等差數(shù)列. 2.等比數(shù)列 (1)通項(xiàng)公式
2、:an=a1qn-1(q≠0); (2)求和公式:q=1,Sn=na1;q≠1,Sn==; (3)性質(zhì): ①若m,n,p,q∈N*,且m+n=p+q,則am·an=ap·aq; ②an=am·qn-m; ③Sm,S2m-Sm,S3m-S2m,…(Sm≠0)成等比數(shù)列. 3.?dāng)?shù)列求和 (1)分組轉(zhuǎn)化求和:一個(gè)數(shù)列既不是等差數(shù)列,也不是等比數(shù)列,若將這個(gè)數(shù)列適當(dāng)拆開(kāi),重新組合,就會(huì)變成幾個(gè)可以求和的部分,分別求和,然后再合并. (2)錯(cuò)位相減法:主要用于求數(shù)列{an·bn}的前n項(xiàng)和,其中{an},{bn}分別是等差數(shù)列和等比數(shù)列. (3)裂項(xiàng)相消法:即將數(shù)列的通項(xiàng)分成兩個(gè)式子的
3、代數(shù)差的形式,然后通過(guò)累加抵消中間若干項(xiàng)的方法,裂項(xiàng)相消法適用于形如(其中{an}是各項(xiàng)均不為零的等差數(shù)列,c為常數(shù))的數(shù)列. 熱點(diǎn)一 等差(比)數(shù)列的性質(zhì) 【例1】(1)(2018·南昌聯(lián)考)等比數(shù)列中,若,,則等于() A.-4 B.4 C.±4 D.172 (2)(2017·北京海淀區(qū)質(zhì)檢)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-2,若數(shù)列{bn}滿足bn=10-log2an,則使數(shù)列{bn}的前n項(xiàng)和取最大值時(shí)的n的值為_(kāi)_______. 解析 (1)∵數(shù)列為等比數(shù)列,,, ∴,即,∴, 則.故選B. (2)∵Sn=2an-2,∴n=1時(shí),a1=2
4、a1-2,解得a1=2. 當(dāng)n≥2時(shí),an=Sn-Sn-1=2an-2-(2an-1-2),∴an=2an-1. ∴數(shù)列{an}是公比與首項(xiàng)都為2的等比數(shù)列,∴an=2n. ∴bn=10-log2an=10-n.由bn=10-n≥0,解得n≤10. ∴使數(shù)列{bn}的前n項(xiàng)和取最大值時(shí)的n的值為9或10. 答案 (1)B (2)9或10 探究提高 1.利用等差(比)性質(zhì)求解的關(guān)鍵是抓住項(xiàng)與項(xiàng)之間的關(guān)系及項(xiàng)的序號(hào)之間的關(guān)系,從這些特點(diǎn)入手選擇恰當(dāng)?shù)男再|(zhì)進(jìn)行求解. 2.活用函數(shù)性質(zhì):數(shù)列是一種特殊的函數(shù),具有函數(shù)的一些性質(zhì),如單調(diào)性、周期性等,可利用函數(shù)的性質(zhì)解題. 【訓(xùn)練1】 (
5、1)設(shè)等差數(shù)列{an}的公差為d,若數(shù)列{2a1an}為遞減數(shù)列,則()
A.d>0 B.d<0 C.a(chǎn)1d>0 D.a(chǎn)1d<0
(2) (2018·銀川一中)等比數(shù)列{an}的前n項(xiàng)和為Sn,己知S2=3,S4=15,則S3=()
A.7 B.-9 C.7或-9 D.638
解析 (1)因?yàn)閿?shù)列{2a1an}為遞減數(shù)列,所以2a1an<2a1an-1,則a1an 6、2,
當(dāng)公比為2時(shí),S2=a1+a2=3解得a1=1,S3=7;
當(dāng)公比為-2時(shí),S2=a1+a2=3解得a1=-3,S3=-9.
故答案為C.
答案 (1)D (2)C
熱點(diǎn)二 等差(比)數(shù)列的判斷與證明
【例2】(2018·哈市附中在)已知數(shù)列{an}滿足Sn=2an-n(n∈N*).
(1)證明:數(shù)列{an+1}是等比數(shù)列;
(2)令bn=n(an+1),數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求Tn.
解(1)由S1=2a1-1得:a1=1,
∵(n≥2),∴,
從而由an+1=2(an-1+1)得an+1an-1+1=2(n≥2),
∴{an-1}是以2為首項(xiàng),2為 7、公比的等比數(shù)列.
(2)由(1)得an=2n-1,bn=n?2n,
∴Tn=1?2+2?22+3?23+?+n?2n,
2Tn=1?22+2?23+3?23+?+n?2n+1.
∴Tn=(n-1)2n+1+2
探究提高 1.本例題常見(jiàn)錯(cuò)誤:
(1)忽略an+1≠0,由an+1(an+2-an)=λan+1直接得出an+2-an=λ.
(2)由{a2n-1}是等差數(shù)列,{a2n}是等差數(shù)列,直接得出數(shù)列{an}為等差數(shù)列.
2.判定等差(比)數(shù)列的主要方法:
(1)定義法:對(duì)于任意n≥1,n∈N*,驗(yàn)證an+1-an為與正整數(shù)n無(wú)關(guān)的一常數(shù).
(2)中項(xiàng)公式法
①若2an= 8、an-1+an+1(n∈N*,n≥2),則{an}為等差數(shù)列;
②若a=an-1·an+1(n∈N*,n≥2)且an≠0,則{an}為等比數(shù)列.
【訓(xùn)練2】(2017·全國(guó)Ⅰ卷)記Sn為等比數(shù)列{an}的前n項(xiàng)和.已知S2=2,S3=-6.
(1)求{an}的通項(xiàng)公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.
解 (1)設(shè){an}的公比為q,由題設(shè)可得
解得q=-2,a1=-2.
故{an}的通項(xiàng)公式為an=(-2)n.
(2)由(1)得Sn===[(-2)n-1],
則Sn+1=[(-2)n+1-1],Sn+2=[(-2)n+2-1],
所以Sn+1 9、+Sn+2=[(-2)n+1-1]+[(-2)n+2-1]=[2(-2)n-2]=[(-2)n-1]=2Sn,
∴Sn+1,Sn,Sn+2成等差數(shù)列.
熱點(diǎn)三 數(shù)列的求和問(wèn)題
1.分組轉(zhuǎn)化求和
【例3.1】(2017·石家莊三模)已知等差數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn,等比數(shù)列{bn}的首項(xiàng)b1=1,且a2=b3,S3=6b2,n∈N*.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=bn+(-1)nan,記數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求Tn.
解 (1)設(shè)數(shù)列{an}的公差為d,數(shù)列{bn}的公比為q.
∵a1=2,b1=1,且a2 10、=b3,S3=6b2,
∴解得
∴an=2+(n-1)×2=2n,bn=2n-1.
(2)由題意:cn=bn+(-1)nan=2n-1+(-1)n2n.
∴Tn=(1+2+4+…+2n-1)+[-2+4-6+8-…+(-1)n·2n],
①若n為偶數(shù):
Tn=+{(-2+4)+(-6+8)+…+[-2(n-1)+2n]}=2n-1+×2=2n+n-1.
②若n為奇數(shù):
Tn=+{(-2+4)+(-6+8)+…+[-2(n-2)+2(n-1)]-2n}=2n-1+2×-2n=2n-n-2.
∴Tn=
探究提高 1.在處理一般數(shù)列求和時(shí),一定要注意運(yùn)用轉(zhuǎn)化思想,把一般的數(shù)列求和 11、轉(zhuǎn)化為等差數(shù)列或等比數(shù)列進(jìn)行求和.在利用分組求和法求和時(shí),常常根據(jù)需要對(duì)項(xiàng)數(shù)n進(jìn)行討論,最后再驗(yàn)證是否可以合并為一個(gè)表達(dá)式.
2.分組求和的策略:(1)根據(jù)等差、等比數(shù)列分組;(2)根據(jù)正號(hào)、負(fù)號(hào)分組.
2.裂項(xiàng)相消法求和
【例3.2】(2015·全國(guó)Ⅰ卷)Sn為數(shù)列{an}的前n項(xiàng)和.已知an>0,a+2an=4Sn+3.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和.
解 (1)由a+2an=4Sn+3,可知a+2an+1=4Sn+1+3.
兩式相減可得a-a+2(an+1-an)=4an+1,
即2(an+1+an)=a-a=(an+1+an)( 12、an+1-an).
由于an>0,可得an+1-an=2.
又a+2a1=4a1+3,解得a1=-1(舍去),a1=3.
所以{an}是首項(xiàng)為3,公差為2的等差數(shù)列,通項(xiàng)公式為an=2n+1.
(2)由an=2n+1可知bn===.
設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,
則Tn=b1+b2+…+bn==.
探究提高 1.裂項(xiàng)相消法求和就是將數(shù)列中的每一項(xiàng)裂成兩項(xiàng)或多項(xiàng),使這些裂開(kāi)的項(xiàng)出現(xiàn)有規(guī)律的相互抵消,要注意消去了哪些項(xiàng),保留了哪些項(xiàng).
2.消項(xiàng)規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊就剩倒數(shù)第幾項(xiàng).
【訓(xùn)練3.2】 (2019·廣元一模)設(shè)Sn為數(shù)列{an}的 13、前n項(xiàng)和,已知a1=2,對(duì)任意n∈N*,都有2Sn=(n+1)an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{4an(an+2)}的前n項(xiàng)和為T(mén)n,證明:12≤Tn<1.
解(1)因?yàn)?Sn=n+1an,當(dāng)n≥2時(shí),2Sn-1=nan-1
兩式相減得:2an=n+1an-nan-1即n-1an=nan-1,
所以當(dāng)n≥2時(shí),ann=an-1n-1.
所以ann=a11=2,即an=2n.
(2)因?yàn)閍n=2n,bn=4anan+2,n∈N*,
所以bn=42n2n+2=1nn+1=1n-1n+1.
所以Tn=b1+b2+?+bn=1-12+12-13+?+1n-1n- 14、1=1-1n+1=nn+1,
因?yàn)?n+1>0,所以1-1n+1<1.
又因?yàn)閒n=1n+1在N*上是單調(diào)遞減函數(shù),
所以1-1n+1在N*上是單調(diào)遞增函數(shù).
所以當(dāng)n=1時(shí),Tn取最小值12,
所以12≤Tn<1.
3.錯(cuò)位相減求和
【例3.3】(2017·天津卷)已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{a2nbn}的前n項(xiàng)和(n∈N*).
解 (1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q 15、,
由已知b2+b3=12,得b1(q+q2)=12,
而b1=2,所以q2+q-6=0,
又因?yàn)閝>0,解得q=2,所以bn=2n.
由b3=a4-2a1,可得3d-a1=8,①
由S11=11b4,可得a1+5d=16,②
聯(lián)立①②,解得a1=1,d=3,由此可得an=3n-2.
所以{an}的通項(xiàng)公式為an=3n-2,{bn}的通項(xiàng)公式為bn=2n.
(2)設(shè)數(shù)列{a2nbn}的前n項(xiàng)和為T(mén)n,由a2n=6n-2,bn=2n,有
Tn= 4×2+10×22+16×23+…+(6n-2)×2n,
2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n- 16、2)×2n+1,
上述兩式相減,得-Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.所以Tn=(3n-4)2n+2+16.
所以數(shù)列{a2nbn}的前n項(xiàng)和為(3n-4)2n+2+16.
探究提高 1.一般地,如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法求和,一般是和式兩邊同乘以等比數(shù)列{bn}的公比,然后作差求解.
2.在寫(xiě)“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”,以便下一步準(zhǔn)確地寫(xiě)出“Sn-qSn”的表達(dá)式.
【訓(xùn)練3.3】 17、(2018·浙江期末)已知數(shù)列{an}滿足:2n-1a1+2n-2a2+?+2an-1+an=n,n∈N*.
(1)求a1,a2及數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:b1=1,bn+1-bnan=2n,求數(shù)列{bn}的通項(xiàng)公式.
解(1)n=1時(shí)a1=1,
n=2時(shí)2a1+a2=2?a2=0
2n-1a1+2n-2a2+?+2an-1+an=n①
2n-2a1+2n-3a2+?+an-1=n-1n≥2②
①-2×②?an=2-nn≥2
a1=1滿足上式,故an=2-n.
(2)bn+1-bn=2-n2n,有b2-b1=1×21b3-b2=0×22?bn-bn- 18、1=3-n×2n-1n≥2累加整理
bn=1+1×21+0×22+?+3-n×2n-1,n≥2①
2bn=2+1×22+0×23+?+3-n×2n,n≥2②
②-①得bn=1-2+1×221-2n-21-2+3-n2n=4-n2n-5n≥2
b1=1滿足上式,故bn=4-n2n-5.
熱點(diǎn)四 an與Sn的關(guān)系問(wèn)題
【例4】(2017·濟(jì)南模擬)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,
bn=-1-log2|an|,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,cn=.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{cn}的前n項(xiàng)和An,并求出An的最值. 19、
解 (1)因?yàn)閍n=5Sn+1,n∈N*,所以an+1=5Sn+1+1,兩式相減,得an+1=-an,
又當(dāng)n=1時(shí),a1=5a1+1,知a1=-,
所以數(shù)列{an}是公比、首項(xiàng)均為-的等比數(shù)列.
所以數(shù)列{an}的通項(xiàng)公式an=.
(2)bn=-1-log2|an|=2n-1,數(shù)列{bn}的前n項(xiàng)和Tn=n2,
cn===-,
所以An=1-.因此{(lán)An}是單調(diào)遞增數(shù)列,
∴當(dāng)n=1時(shí),An有最小值A(chǔ)1=1-=;An沒(méi)有最大值.
探究提高 1.給出Sn與an的遞推關(guān)系求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為an的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為 20、Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.
2.形如an+1=pan+q(p≠1,q≠0),可構(gòu)造一個(gè)新的等比數(shù)列.
【訓(xùn)練4】(2019·棗莊八中)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,Sn=2Sn-1-n(n≥2,n∈N*).
(1)求{an}的通項(xiàng)公式;
(2)若bn=nan,求{bn}的前n項(xiàng)和Tn.
解(1)Sn=2Sn-1-nn≥2,n∈N*①,當(dāng)n≥33時(shí),Sn-1=2Sn-2n-1②.
①-②得,an=2an-1-1,an-1=2an-1-1,所以an-1an-1-1=2n≥3.
當(dāng)n=2時(shí),a1+a2=2a1-2,得a2=0,則a2-1a1-1= 21、-11=-1≠2.
所以an-1是從第二項(xiàng)起,以2為公比的等比數(shù)列.
則an-1=-1?2n-2=-2n-2,an=-2n-2+1n≥2,n∈N*
所以an=2,n=1-2n-2+1,n≥2.
(2)易知bn=2,n=1-n?2n-2+n,n≥2
Tn=2-2×20-3×21-...-n?2n-2+2+3+...+n③,
2Tn=4-2×21-3×22-...-n?2n-1+22+3+...+n④,
③-④得-Tn=-2-2-2-22-23-...-2n-2+n?2n-1-n-1n+22=-4-2-2n-2×21-2+n?2n-1-n-1n+22=2n-1n-1-2-n-1n+2 22、2.
所以Tn=n2+n+22-2n-1n-1.
1.(2018·全國(guó)I卷)設(shè)Sn為等差數(shù)列an的前n項(xiàng)和,若3S3=S2+S4,a1=2,則a5=()
A.-12 B.-10 C.10 D.12
2.(2018·全國(guó)I卷)記Sn為數(shù)列an的前n項(xiàng)和,若Sn=2an+1,則S6=_____________.
3.(2018·全國(guó)III卷)等比數(shù)列an中,a1=1?,??a5=4a3.
(1)求an的通項(xiàng)公式;
(2)記Sn為an的前n項(xiàng)和.若Sm=63,求m.
4.(2018·全國(guó)II卷)記Sn為等差數(shù)列{an}的前n 23、項(xiàng)和,已知a1=-7,S3=-15.
(1)求{an}的通項(xiàng)公式;
(2)求Sn,并求Sn的最小值.
5.(2018·全國(guó)I卷)已知數(shù)列an滿足a1=1,nan+1=2n+1an,設(shè)bn=ann.
(1)求b1?,??b2?,??b3;
(2)判斷數(shù)列bn是否為等比數(shù)列,并說(shuō)明理由;
(3)求an的通項(xiàng)公式.
1.(2018·玉溪一中)設(shè)Sn為等比數(shù)列an的前n項(xiàng)和,a5a2=-8,則S5S2=( )
A.11 B.5 C.-11 D.-8
2.(2018·銀川一中)在等差數(shù)列{a 24、n}中,若a10a9<-1,且它的前n項(xiàng)和Sn有最大值,則使Sn>0成立的正整數(shù)n的最大值是()
A.15 B.16 C.17 D.14
3.(2018·福建聯(lián)考)在正整數(shù)數(shù)列中,由1開(kāi)始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個(gè)偶數(shù)2,4,6;再染6后面最鄰近的5個(gè)連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個(gè)連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個(gè)連續(xù)奇數(shù)29,31,…,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,……,則在這個(gè)紅色子數(shù)列中,由1開(kāi)始的第2019個(gè)數(shù)是()
A.3972 25、 B.3974 C.3991 D.3993
4.(2017·沈陽(yáng)二模)已知數(shù)列{an}滿足an+1-an=2,a1=-5,則|a1|+|a2|+…+|a6|=()
A.9 B.15 C.18 D.30
5.(2017·成都診斷)已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a1+2a2=5,4a=a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=2,且bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和為T(mén)n.
1.(2018·長(zhǎng)郡中學(xué))已知數(shù)列{an}的前n項(xiàng)和為 26、Sn,且Sn=n2+4n,若首項(xiàng)為13的數(shù)列{bn}滿足1bn+1-1bn=an,則數(shù)列{bn}的前10項(xiàng)和為()
A.175264 B.3988 C.173264 D.181264
2.(2018·蓮塘一中)數(shù)列{an}的前n項(xiàng)和為Sn,a1=-8,且(3n-5)an+1=(3n-2)an-9n2+21n-10,
若n,m∈N*,n>m,則Sn-Sm的最大值為()
A.10 B.15 C.18 D.26
3.(2016·全國(guó)Ⅲ卷)已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1,a-(2an+1-1)an-2an+1=0.
(1)求a2,a3;
(2)求{an}的通項(xiàng)公式.
27、
4.(2018·長(zhǎng)春期末)已知數(shù)列an的前n項(xiàng)和Sn滿足Sn=Sn-1+1n≥2,n∈N,且a1=1,
(1)求數(shù)列的通項(xiàng)公式an;
(2)記bn=1an?an+1,Tn為bn的前n項(xiàng)和,求使Tn≥2n成立的n的最小值.
5.(2017·衡水中學(xué)質(zhì)檢)若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,若不等式(-1)nλ 28、的取值范圍.
參考答案
1.【解題思路】首先設(shè)出等差數(shù)列an的公差為d,利用等差數(shù)列的求和公式,得到公差d所滿足的等量關(guān)系式,從而求得結(jié)果d=-3,之后應(yīng)用等差數(shù)列的通項(xiàng)公式求得a5=a1+4d=2-12=-10,從而求得正確結(jié)果.
【答案】設(shè)該等差數(shù)列的公差為d,
根據(jù)題中的條件可得3(3×2+3×22?d)=2×2+d+4×2+4×32?d,
整理解得d=-3,所以a5=a1+4d=2-12=-10,故選B.
2.【解題思路】首先根據(jù)題中所給的Sn=2an+1,類比著寫(xiě)出Sn+1=2an+1+1,兩式相減,整理得到an+1=2an,從而確定出數(shù)列an為等 29、比數(shù)列,再令n=1,結(jié)合a1,S1的關(guān)系,求得a1=-1,之后應(yīng)用等比數(shù)列的求和公式求得S6的值.
【答案】根據(jù)Sn=2an+1,可得Sn+1=2an+1+1,
兩式相減得an+1=2an+1-2an,即an+1=2an,
當(dāng)n=1時(shí),S1=a1=2a1+1,解得a1=-1,
所以數(shù)列an是以-1為首項(xiàng),以2為公布的等比數(shù)列,
所以S6=-(1-26)1-2=-63,故答案是-63.
3.【解題思路】(1)列出方程,解出q可得;(2)求出前n項(xiàng)和,解方程可得m.
【答案】(1)設(shè){an}的公比為q,由題設(shè)得an=qn-1.
由已知得q4=4q2,解得q=0(舍去),q=-2或q 30、=2.
故an=(-2)n-1或an=2n-1.
(2)若an=(-2)n-1,則Sn=1-(-2)n3.由Sm=63得(-2)m=-188,此方程沒(méi)有正整數(shù)解.
若an=2n-1,則Sn=2n-1.由Sm=63得2m=64,解得m=6.
綜上,m=6.
點(diǎn)睛:本題主要考查等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,屬于基礎(chǔ)題.
4.【解題思路】(1)根據(jù)等差數(shù)列前n項(xiàng)和公式,求出公差,再代入等差數(shù)列通項(xiàng)公式得結(jié)果,
(2)根據(jù)等差數(shù)列前n項(xiàng)和公式得Sn的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)對(duì)稱軸以及自變量為正整數(shù)求函數(shù)最值.
【答案】(1)設(shè){an}的公差為d,由題意得.
由得.
所以{a 31、n}的通項(xiàng)公式為an=2n–9.
(2)由(1)得Sn=n2–8n=(n–4)2–16.
所以當(dāng)n=4時(shí),Sn取得最小值,最小值為–16.
5.【解題思路】(1)根據(jù)題中條件所給的數(shù)列an的遞推公式nan+1=2n+1an,將其化為an+1=2(n+1)nan,
分別令n=1和n=2,代入上式求得a2=4和a3=12,再利用bn=ann,從而求得b1=1,b2=2,b3=4.
(2)利用條件可以得到an+1n+1=2ann,從而可以得出bn+1=2bn,這樣就可以得到數(shù)列{bn}是首項(xiàng)為1,
公比為2的等比數(shù)列.
(3)借助等比數(shù)列的通項(xiàng)公式求得ann=2n-1,從而求得an=n 32、·2n-1.
【答案】(1)由條件可得an+1=2(n+1)nan.
將n=1代入得,a2=4a1,而a1=1,所以,a2=4.
將n=2代入得,a3=3a2,所以,a3=12.
從而b1=1,b2=2,b3=4.
(2){bn}是首項(xiàng)為1,公比為2的等比數(shù)列.
由條件可得an+1n+1=2ann,即bn+1=2bn,又b1=1,所以{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.
(3)由(2)可得ann=2n-1,所以an=n·2n-1.
1.【解題思路】設(shè)公比為q,由a5a2=-8可求得q值,利用前n項(xiàng)和公式表示出S5,S2即可求得S5S2值.
【答案】設(shè)公比為q,由a 33、5a2=-8,可得a5=﹣8a2,得8a2+a2q3=0,解得q=﹣2,
所以S5S2=a1[1-(-2)5]1+2a1[1-(-2)2]1+2=-11,故選C.
2.【解題思路】由題意可得a9>0,a10<0,且a9+a10<0,由等差數(shù)列的性質(zhì)和求和公式可得結(jié)論.
【答案】∵等差數(shù)列{an}的前n項(xiàng)和有最大值,∴等差數(shù)列{an}為遞減數(shù)列,
又a10a9<-1,∴a9>0,a10<0,∴a9+a10<0,
又S18=18(a1+a18)2<0,S17=17(a1+a17)2=17a9>0,
∴Sn>0成立的正整數(shù)n的最大值是17,故選C.
3.【解題思路】根據(jù)題意知,每次涂成 34、紅色的數(shù)字成等差數(shù)列,并且第n次染色時(shí)所染的最后一個(gè)數(shù)是n(2n-1),可以求出2019個(gè)數(shù)是在第45次染色的倒數(shù)第7個(gè)數(shù),因此可求得結(jié)果.
【答案】第1此染色的數(shù)為1=1×1,共染色1個(gè),
第2次染色的最后一個(gè)數(shù)為6=2×3,共染色3個(gè),
第3次染色的最后一個(gè)數(shù)為15=3×5,共染色5個(gè),
第4次染色的最后一個(gè)數(shù)為28=4×7,共染色7個(gè),
第5次染色的最后一個(gè)數(shù)為45=5×9,共染色9個(gè),
…
∴第n次染色的最后一個(gè)數(shù)為n×(2n-1),共染色2n-1個(gè),
經(jīng)過(guò)n次染色后被染色的數(shù)共有1+3+5+…+(2n-1)=n2個(gè),
而2019=45×45-6,
∴第2019個(gè)數(shù) 35、是在第45次染色時(shí)被染色的,第45次染色的最后一個(gè)數(shù)為45×89,且相鄰兩個(gè)數(shù)相差2,
∴2019=45×89-12=3993.
故選D.
4.【解題思路】確定數(shù)列{an}中那些項(xiàng)是正數(shù),那些項(xiàng)是負(fù)數(shù).
【答案】∵an+1-an=2,a1=-5,∴數(shù)列{an}是公差為2的等差數(shù)列.
∴an=-5+2(n-1)=2n-7.
數(shù)列{an}的前n項(xiàng)和Sn==n2-6n.
令an=2n-7≥0,解得n≥.∴n≤3時(shí),|an|=-an;n≥4時(shí),|an|=an.
則|a1|+|a2|+…+|a6|=-a1-a2-a3+a4+a5+a6=S6-2S3=62-6×6-2(32-6×3)=18 36、.
故選C.
5.【解題思路】(1)由a1+2a2=5,4a=a2a6.列方程組解出首項(xiàng)a1,公比q,(2)利用累加法求通項(xiàng). (3)裂項(xiàng)相消法求前n項(xiàng)和.
【答案】解 (1)設(shè)等比數(shù)列{an}的公比為q,由4a=a2a6得4a=a所以q2=4,由條件可知q>0,故q=2,由a1+2a2=5得a1+2a1q=5,所以a1=1,
故數(shù)列{an}的通項(xiàng)公式為an=2n-1.
(2)由bn+1=bn+an得bn+1-bn=2n-1,
故b2-b1=20,b3-b2=21,…,bn-bn-1=2n-2(n≥2),
以上n-1個(gè)等式相加得bn-b1=1+21+…+2n-2==2n-1-1, 37、
由b1=2,所以bn=2n-1+1(n∈N*).
(3)cn===-,
所以Tn=c1+c2+…+cn=++…+=-=-.
1.【解題思路】首先根據(jù)數(shù)列中Sn與an的關(guān)系,求得an=2n+3,利用條件1bn+1-1bn=an=2n+3,用累加法求得bn=1n2+2n,用裂項(xiàng)相消法求和,之后將n=10代入求得結(jié)果.
【答案】由Sn=n2+4n,可得an=2n+3,
根據(jù)1bn+1-1bn=an=2n+3,結(jié)合題的條件,應(yīng)用累加法可求得1bn=n2+2n,
所以bn=1n2+2n=1n(n+2)=12(1n-1n+2),
所以數(shù)列bn的前n項(xiàng)和為T(mén)n=12(1-13+12 38、-14+?+1n-1n+2)=12(32-1n+1-1n+2),
所以T10=12(32-111-112)=175264,
故選A.
2.【解題思路】由已知條件求出數(shù)列的通項(xiàng)公式,根據(jù)數(shù)列特征求出最值
【答案】∵(3n-5)an+1=(3n-2)an-9n2+21n-10,
∴(3n-5)an+1=(3n-2)an-9n2-21n+10,
(3n-5)an+1=(3n-2)an-3n-53n-2,
∵n∈N*,∴an+13n-2=an3n-5-1,
∴數(shù)列{an3n-5}為等差數(shù)列,首項(xiàng)為a13-5=4,d=-1
an3n-5=4-n-1=5-n,
an=3n-55-n,
39、
a2=3,a3=8,a4=7
在數(shù)列{an}中只有a2,a3,a4為正數(shù)
∴Sn-Sm的最大值為a2+a3+a4=3+8+7=18,
故選C.
3.【解題思路】(1)代入n=1,n=2依次求出a2,a3,(2)化簡(jiǎn)a-(2an+1-1)an-2an+1=0可得為數(shù)列{an}等比數(shù)列.
【答案】解 (1)由a1=1,a-(2an+1-1)an-2an+1=0,
令n=1,得a2=,
令n=2,得a-(2a3-1)a2-2a3=0,則a3=.
(2)由a-(2an+1-1)an-2an+1=0,得2an+1(an+1)=an(an+1),
因?yàn)閧an}的各項(xiàng)都為正數(shù),所以=.
40、
故{an}是首項(xiàng)為1,公比為的等比數(shù)列,因此an=.
4.【解題思路】(1)根據(jù)題干得到數(shù)列{Sn}為等差數(shù)列,進(jìn)而得到Sn=n2,再由an=Sn-Sn-1可求通項(xiàng);(2)由(1)知,bn=12(12n-1-12n+1),裂項(xiàng)求和即可.
【答案】(1)由已知有Sn-Sn-1=1,∴??數(shù)列{Sn}為等差數(shù)列,
且S1=a1=1,∴??Sn=n,即Sn=n2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1,
又a1=1也滿足上式,∴??an=2n-1;
(2)由(1)知,bn=1(2n-1)(2n+1)=12(12n-1-12n+1)
∴??Tn=12(1-1 41、3+13-15+???+12n-1-12n+1)=12(1-12n+1)=n2n+1,
由Tn≥2n有n2≥4n+2,有(n-2)2≥6,所以n≥5,∴??n的最小值為5.
5.【解題思路】(1)等差數(shù)列,等比數(shù)列的定義,(2)錯(cuò)位相減法求Tn.
【答案】解 (1)∵數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
∴n=1時(shí),a1+1=2,解得a1=1.
又?jǐn)?shù)列{an}是公差為2的等差數(shù)列,
∴an=1+2(n-1)=2n-1.
∴2nbn=nbn+1,化為2bn=bn+1,
∴數(shù)列{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.
∴bn=2n-1.
(2)由數(shù)列{cn}滿足cn===,
數(shù)列{cn}的前n項(xiàng)和為T(mén)n=1+++…+,∴Tn=++…++,
兩式作差,得∴Tn=1+++…+-=-=2-,∴Tn=4-.
不等式(-1)nλ
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案