(浙江專版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 第1節(jié) 數(shù)列的概念及簡(jiǎn)單表示法學(xué)案 理
《(浙江專版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 第1節(jié) 數(shù)列的概念及簡(jiǎn)單表示法學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 第1節(jié) 數(shù)列的概念及簡(jiǎn)單表示法學(xué)案 理(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第1節(jié) 數(shù)列的概念及簡(jiǎn)單表示法 最新考綱 1.了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式);2.了解數(shù)列是自變量為正整數(shù)的一類特殊函數(shù). 知 識(shí) 梳 理 1.?dāng)?shù)列的概念 (1)數(shù)列的定義:按照一定順序排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng). (2)數(shù)列與函數(shù)的關(guān)系:從函數(shù)觀點(diǎn)看,數(shù)列可以看成以正整數(shù)集N*(或它的有限子集)為定義域的函數(shù)an=f(n),當(dāng)自變量按照從小到大的順序依次取值時(shí)所對(duì)應(yīng)的一列函數(shù)值. (3)數(shù)列有三種表示法,它們分別是列表法、圖象法和通項(xiàng)公式法. 2.?dāng)?shù)列的分類 分類原則 類型 滿足條件 按項(xiàng)數(shù)分類 有窮數(shù)列
2、 項(xiàng)數(shù)有限 無(wú)窮數(shù)列 項(xiàng)數(shù)無(wú)限 按項(xiàng)與項(xiàng)間 的大小關(guān)系 分類 遞增數(shù)列 an+1>an 其中 n∈N* 遞減數(shù)列 an+1<an 常數(shù)列 an+1=an 按其他 標(biāo)準(zhǔn)分類 有界數(shù)列 存在正數(shù)M,使|an|≤M 擺動(dòng)數(shù)列 從第二項(xiàng)起,有些項(xiàng)大于它的前一項(xiàng),有些項(xiàng)小于它的前一項(xiàng)的數(shù)列 3.數(shù)列的通項(xiàng)公式 (1)通項(xiàng)公式:如果數(shù)列{an}的第n項(xiàng)an與序號(hào)n之間的關(guān)系可以用一個(gè)式子an=f(n)來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式. (2)遞推公式:如果已知數(shù)列{an}的第1項(xiàng)(或前幾項(xiàng)),且從第二項(xiàng)(或某一項(xiàng))開(kāi)始的任一項(xiàng)an與它的前一項(xiàng)an-1
3、(或前幾項(xiàng))間的關(guān)系可以用一個(gè)公式來(lái)表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的遞推公式. 4.已知數(shù)列{an}的前n項(xiàng)和Sn,則an= [常用結(jié)論與微點(diǎn)提醒] 1.一些常見(jiàn)數(shù)列的通項(xiàng)公式 (1)數(shù)列1,2,3,4,…的通項(xiàng)公式為an=n; (2)數(shù)列2,4,6,8,…的通項(xiàng)公式為an=2n; (3)數(shù)列1,2,4,8,…的通項(xiàng)公式為an=2n-1; (4)數(shù)列1,4,9,16,…的通項(xiàng)公式為an=n2; (5)數(shù)列1,,,,…的通項(xiàng)公式為an=. 2.已知遞推關(guān)系求通項(xiàng)一般有兩種常見(jiàn)思路: (1)算出前幾項(xiàng),再歸納、猜想; (2)利用累加或累乘法求數(shù)列的通項(xiàng)公式. 診 斷 自
4、測(cè) 1.思考辨析(在括號(hào)內(nèi)打“√”或“×”) (1)相同的一組數(shù)按不同順序排列時(shí)都表示同一個(gè)數(shù)列.( ) (2)一個(gè)數(shù)列中的數(shù)是不可以重復(fù)的.( ) (3)所有數(shù)列的第n項(xiàng)都能使用公式表達(dá).( ) (4)根據(jù)數(shù)列的前幾項(xiàng)歸納出的數(shù)列的通項(xiàng)公式可能不止一個(gè).( ) 解析 (1)數(shù)列:1,2,3和數(shù)列:3,2,1是不同的數(shù)列. (2)數(shù)列中的數(shù)是可以重復(fù)的. (3)不是所有的數(shù)列都有通項(xiàng)公式. 答案 (1)× (2)× (3)× (4)√ 2.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=n2,則a8的值為( ) A.15 B.16
5、 C.49 D.64 解析 當(dāng)n=8時(shí),a8=S8-S7=82-72=15. 答案 A 3.已知數(shù)列的前4項(xiàng)為2,0,2,0,則依此歸納該數(shù)列的通項(xiàng)不可能是( ) A.a(chǎn)n=(-1)n-1+1 B.a(chǎn)n= C.a(chǎn)n=2sin D.a(chǎn)n=cos(n-1)π+1 解析 對(duì)n=1,2,3,4進(jìn)行驗(yàn)證,an=2sin不合題意,故選C. 答案 C 4.已知an=n2+λn,且對(duì)于任意的n∈N*,數(shù)列{an}是遞增數(shù)列,則實(shí)數(shù)λ的取值范圍是________. 解析 因?yàn)閧an}是遞增數(shù)列,所以對(duì)任意的n∈N*,都有an+1>an,即(n+1)2+λ(n+1)>n2+λn,整
6、理, 得2n+1+λ>0,即λ>-(2n+1).(*) 因?yàn)閚≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3. 答案 (-3,+∞) 5.(2018·臺(tái)州月考)在數(shù)列{xn}中,x1=10,xn=log2(xn-1-2),則數(shù)列{xn}的第2項(xiàng)是________,所有項(xiàng)和T=________. 解析 ∵x1=10,xn=log2(xn-1-2), ∴x2=log2(x1-2)=log28=3,x3=log2(x2-2)=log21=0. 數(shù)列{xn}所有項(xiàng)的和為10+3+0=13. 答案 3 13 6.(必修5P33A5改編)根據(jù)下面的圖形及相應(yīng)的點(diǎn)數(shù),
7、寫出點(diǎn)數(shù)構(gòu)成的數(shù)列的一個(gè)通項(xiàng)公式an=________. 解析 a1=1,a2=6=1+5=1+5×(2-1), a3=11=1+5×2=1+5×(3-1), a4=16=1+5×3=1+5×(4-1), ∴an=1+5×(n-1)=5n-4. 答案 5n-4 考點(diǎn)一 由數(shù)列的前幾項(xiàng)求數(shù)列的通項(xiàng) 【例1】 根據(jù)下面各數(shù)列前幾項(xiàng)的值,寫出數(shù)列的一個(gè)通項(xiàng)公式: (1)-1,7,-13,19,…; (2),,,,,…; (3),2,,8,,…; (4)5,55,555,5 555,…. 解 (1)偶數(shù)項(xiàng)為正,奇數(shù)項(xiàng)為負(fù),故通項(xiàng)公式必含有因式(-1)n,觀察各項(xiàng)的絕對(duì)值
8、,后一項(xiàng)的絕對(duì)值總比它前一項(xiàng)的絕對(duì)值大6,故數(shù)列的一個(gè)通項(xiàng)公式為an=(-1)n(6n-5). (2)這是一個(gè)分?jǐn)?shù)數(shù)列,其分子構(gòu)成偶數(shù)數(shù)列,而分母可分解為1×3,3×5,5×7,7×9,9×11,…,每一項(xiàng)都是兩個(gè)相鄰奇數(shù)的乘積,分子依次為2,4,6,…,相鄰的偶數(shù),故所求數(shù)列的一個(gè)通項(xiàng)公式為an=. (3)數(shù)列的各項(xiàng),有的是分?jǐn)?shù),有的是整數(shù),可將數(shù)列的各項(xiàng)都統(tǒng)一成分?jǐn)?shù)再觀察.即,,,,,…,分子為項(xiàng)數(shù)的平方,從而可得數(shù)列的一個(gè)通項(xiàng)公式為an=. (4)將原數(shù)列改寫為×9,×99,×999,…,易知數(shù)列9,99,999,…的通項(xiàng)為10n-1,故所求的數(shù)列的一個(gè)通項(xiàng)公式為an=(10n-1
9、). 規(guī)律方法 根據(jù)所給數(shù)列的前幾項(xiàng)求其通項(xiàng)時(shí),需仔細(xì)觀察分析,抓住以下幾方面的特征: (1)分式中分子、分母的各自特征; (2)相鄰項(xiàng)的聯(lián)系特征; (3)拆項(xiàng)后的各部分特征; (4)符號(hào)特征.應(yīng)多進(jìn)行對(duì)比、分析,從整體到局部多角度觀察、歸納、聯(lián)想. 【訓(xùn)練1】 (1)數(shù)列0,,,,…的一個(gè)通項(xiàng)公式為( ) A.a(chǎn)n=(n∈N*) B.a(chǎn)n=(n∈N*) C.a(chǎn)n=(n∈N*) D.a(chǎn)n=(n∈N*) (2)數(shù)列-,,-,,…的一個(gè)通項(xiàng)公式an=________. 解析 (1)注意到分子0,2,4,6都是偶數(shù),對(duì)照選項(xiàng)排除即可. (2)這個(gè)數(shù)列前4項(xiàng)的絕對(duì)值都等
10、于序號(hào)與序號(hào)加1的積的倒數(shù),且奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,所以它的一個(gè)通項(xiàng)公式為an=(-1)n. 答案 (1)C (2)(-1)n 考點(diǎn)二 由Sn與an的關(guān)系求an(易錯(cuò)警示) 【例2】 (1)(2017·溫州市十校聯(lián)考)在數(shù)列{an}中,Sn是其前n項(xiàng)和,且Sn=2an+1,則數(shù)列的通項(xiàng)公式an=________. (2)已知數(shù)列{an}的前n項(xiàng)和Sn=3n+1,則數(shù)列的通項(xiàng)公式an=________. 解析 (1)依題意得Sn+1=2an+1+1,Sn=2an+1,兩式相減得Sn+1-Sn=2an+1-2an,即an+1=2an,又S1=2a1+1=a1,因此a1=-1,所以數(shù)列{
11、an}是以a1=-1為首項(xiàng)、2為公比的等比數(shù)列,an=-2n-1. (2)當(dāng)n=1時(shí),a1=S1=3+1=4, 當(dāng)n≥2時(shí),an=Sn-Sn-1=3n+1-3n-1-1=2·3n-1. 顯然當(dāng)n=1時(shí),不滿足上式. ∴an= 答案 (1)-2n-1 (2) 規(guī)律方法 數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是an=①當(dāng)n=1時(shí),a1若適合Sn-Sn-1,則n=1的情況可并入n≥2時(shí)的通項(xiàng)an;②當(dāng)n=1時(shí),a1若不適合Sn-Sn-1,則用分段函數(shù)的形式表示. 易錯(cuò)警示 在利用數(shù)列的前n項(xiàng)和求通項(xiàng)時(shí),往往容易忽略先求出a1,而是直接把數(shù)列的通項(xiàng)公式寫成an=Sn-Sn-1的形式,但它只適
12、用于n≥2的情形. 【訓(xùn)練2】 (1)若數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n+1,則數(shù)列{an}的通項(xiàng)公式an=________. (2)若數(shù)列{an}的前n項(xiàng)和Sn=an+,則{an}的通項(xiàng)公式an=________. 解析 (1)當(dāng)n=1時(shí),a1=S1=3×12-2×1+1=2; 當(dāng)n≥2時(shí), an=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5,顯然當(dāng)n=1時(shí),不滿足上式. 故數(shù)列的通項(xiàng)公式為an= (2)由Sn=an+,得當(dāng)n≥2時(shí),Sn-1=an-1+, 兩式相減,得an=an-an-1, ∴當(dāng)n≥2時(shí),an=-2an-1,即=
13、-2. 又n=1時(shí),S1=a1=a1+,a1=1, ∴an=(-2)n-1. 答案 (1) (2)(-2)n-1 考點(diǎn)三 由數(shù)列的遞推關(guān)系求通項(xiàng)公式 【例3】 (1)已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=________. (2)(2018·衢州質(zhì)檢)在數(shù)列{an}中,a1=1,(n2+2n)(an+1-an)=1(n∈N*),則通項(xiàng)公式an=________. 解析 (1)由an+2+2an-3an+1=0, 得an+2-an+1=2(an+1-an), ∴數(shù)列{an+1-an}是以a2-a1=3為首
14、項(xiàng),2為公比的等比數(shù)列,∴an+1-an=3×2n-1, ∴n≥2時(shí),an-an-1=3×2n-2,…,a3-a2=3×2,a2-a1=3, 將以上各式累加得 an-a1=3×2n-2+…+3×2+3=3(2n-1-1), ∴an=3×2n-1-2(當(dāng)n=1時(shí),也滿足). (2)由(n2+2n)(an+1-an)=1得an+1-an==×,所以a2-a1=×,a3-a2=×,…,an-1-an-2=,an-an-1=,所以an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1=×+1=-. 答案 (1)3×2n-1-2 (2)- 規(guī)律方法 (1
15、)形如an+1=an+f(n)的遞推關(guān)系式利用累加法求通項(xiàng)公式,特別注意能消去多少項(xiàng),保留多少項(xiàng). (2)形如an+1=an·f(n)的遞推關(guān)系式可化為=f(n)的形式,可用累乘法,也可用an=··…··a1代入求出通項(xiàng). (3)形如an+1=pan+q的遞推關(guān)系式可以化為(an+1+x)=p(an+x)的形式,構(gòu)成新的等比數(shù)列,求出通項(xiàng)公式,求變量x是關(guān)鍵. 【訓(xùn)練3】 在數(shù)列{an}中, (1)若a1=2,an+1=an+n+1,則通項(xiàng)公式an=________. (2)(一題多解)若a1=1,an=an-1(n≥2),則通項(xiàng)公式an=________. (3)若a1=1,an
16、+1=2an+3,則通項(xiàng)公式an=________. 解析 (1)由題意得,當(dāng)n≥2時(shí),an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+(2+3+…+n)=2+=+1.又a1=2=+1,符合上式,因此an=+1. (2)法一 因?yàn)閍n=an-1(n≥2),所以an-1=·an-2,…,a2=a1,以上(n-1)個(gè)式子的等號(hào)兩端分別相乘得an=a1···…·==. 法二 因?yàn)閍n=···…···a1=···…·1=. (3)設(shè)遞推公式an+1=2an+3可以轉(zhuǎn)化為an+1+t=2(an+t),即an+1=2an+t,解得t=3. 故an+1+3=2(an+3).
17、 令bn=an+3,則b1=a1+3=4,且==2. 所以{bn}是以4為首項(xiàng),2為公比的等比數(shù)列. ∴bn=4·2n-1=2n+1,∴an=2n+1-3. 答案 (1)+1 (2) (3)2n+1-3 基礎(chǔ)鞏固題組 一、選擇題 1.?dāng)?shù)列,-,,-,…的第10項(xiàng)是( ) A.- B.- C.- D.- 解析 所給數(shù)列呈現(xiàn)分?jǐn)?shù)形式,且正負(fù)相間,求通項(xiàng)公式時(shí),我們可以把每一部分進(jìn)行分解:符號(hào)、分母、分子.很容易歸納出數(shù)列{an}的通項(xiàng)公式an=(-1)n+1·,故a10=-. 答案 C 2.?dāng)?shù)列0,1,0,-1,0,1,0,-1,…的一個(gè)通項(xiàng)公式an等于(
18、 ) A. B.cos C.cos π D.cos π 解析 令n=1,2,3,…,逐一驗(yàn)證四個(gè)選項(xiàng),易得D正確. 答案 D 3.(一題多解)在數(shù)列{an}中,已知a1=1,an+1=2an+1,則其通項(xiàng)公式an=( ) A.2n-1 B.2n-1+1 C.2n-1 D.2(n-1) 解析 法一 由an+1=2an+1,可求a2=3,a3=7,a4=15,…,驗(yàn)證可知an=2n-1. 法二 由題意知an+1+1=2(an+1),∴數(shù)列{an+1}是以2為首項(xiàng),2為公比的等比數(shù)列,∴an+1=2n,∴an=2n-1. 答案 A 4.?dāng)?shù)列{an}滿足an+
19、1+an=2n-3,若a1=2,則a8-a4=( ) A.7 B.6 C.5 D.4 解析 依題意得(an+2+an+1)-(an+1+an)=[2(n+1)-3]-(2n-3),即an+2-an=2,所以a8-a4=(a8-a6)+(a6-a4)=2+2=4. 答案 D 5.?dāng)?shù)列{an}的前n項(xiàng)積為n2,那么當(dāng)n≥2時(shí),an等于( ) A.2n-1 B.n2 C. D. 解析 設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,則Tn=n2, 當(dāng)n≥2時(shí),an==. 答案 D 6.(2018·寧波鎮(zhèn)海中學(xué)調(diào)研)已知數(shù)列{an}的首項(xiàng)a1=a,其前n項(xiàng)和為Sn,且滿足Sn
20、+Sn-1=4n2(n≥2,n∈N*),若對(duì)任意n∈N*,an<an+1恒成立,則a的取值范圍是( ) A.(3,5) B.(4,6) C.[3,5) D.[4,6) 解析 由Sn+Sn-1=4n2(n≥2,n∈N*),得Sn+1+Sn=4(n+1)2.兩式相減得,an+1+an=8n+4(n≥2),則an+2+an+1=8n+12.兩式相減得,an+2-an=8(n≥2).又由a1=a,a1+a2+a1=16得a2=16-2a,又由a1+a2+a3+a1+a2=4×32得a3=4+2a,所以a2n=a2+8(n-1)=8n+8-2a,a2n+1=a3+8(n-1)=8n-4+2
21、a.因?yàn)閷?duì)任意n∈N*,an<an+1恒成立,所以解得3<a<5. 答案 A 二、填空題 7.若數(shù)列{an}滿足關(guān)系an+1=1+,a8=,則a5=________. 解析 借助遞推關(guān)系,則a8遞推依次得到a7=,a6=,a5=. 答案 8.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an≠0(n∈N*),又anan+1=Sn,則a3-a1=________. 解析 因?yàn)閍nan+1=Sn,所以令n=1得a1a2=S1=a1,由于a1≠0,則a2=1,令n=2,得a2a3=S2=a1+a2,即a3=1+a1,所以a3-a1=1. 答案 1 9.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+
22、2n+1(n∈N*),則a1=________;an=________. 解析 當(dāng)n≥2時(shí),an=Sn-Sn-1=2n+1,當(dāng)n=1時(shí),a1=S1=4≠2×1+1,因此an= 答案 4 10.(2018·紹興一中適應(yīng)性考試)數(shù)列{an}的前n項(xiàng)和為Sn=n2+n+1,bn= (-1)n·(an-2)(n∈N*),則數(shù)列{an}的通項(xiàng)公式為_(kāi)_______,數(shù)列{bn}的前50項(xiàng)和為_(kāi)_______. 解析 當(dāng)n=1時(shí),a1=S1=3;當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n+1-[(n-1)2+(n-1)+1]=2n,當(dāng)n=1時(shí)不滿足上式,則其通項(xiàng)公式為an=當(dāng)n=1時(shí),b1=-
23、1;當(dāng)n≥2時(shí),bn=(-1)n·(an-2)=(-1)n·2(n-1),則數(shù)列{bn}的前50項(xiàng)和為-1+2×1-2×2+2×3-…+2×49=-1+2×(1-2+3-…+49)=-1+2×25=49. 答案 an= 49 三、解答題 11.?dāng)?shù)列{an}的通項(xiàng)公式是an=n2-7n+6. (1)這個(gè)數(shù)列的第4項(xiàng)是多少? (2)150是不是這個(gè)數(shù)列的項(xiàng)?若是這個(gè)數(shù)列的項(xiàng),它是第幾項(xiàng)? (3)該數(shù)列從第幾項(xiàng)開(kāi)始各項(xiàng)都是正數(shù)? 解 (1)當(dāng)n=4時(shí),a4=42-4×7+6=-6. (2)令an=150,即n2-7n+6=150,解得n=16或n=-9(舍去),即150是這個(gè)數(shù)列的第
24、16項(xiàng). (3)令an=n2-7n+6>0,解得n>6或n<1(舍). ∴從第7項(xiàng)起各項(xiàng)都是正數(shù). 12.已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=an. (1)求a2,a3; (2)求{an}的通項(xiàng)公式. 解 (1)由S2=a2得3(a1+a2)=4a2, 解得a2=3a1=3. 由S3=a3得3(a1+a2+a3)=5a3, 解得a3=(a1+a2)=6. (2)由題設(shè)知a1=1. 當(dāng)n≥2時(shí),有an=Sn-Sn-1=an-an-1, 整理得an=an-1. 于是 a1=1, a2=a1, a3=a2, …… an-1=an-2, an=an-1.
25、 將以上n個(gè)等式兩端分別相乘, 整理得an=. 顯然,當(dāng)n=1時(shí)也滿足上式. 綜上可知,{an}的通項(xiàng)公式an=. 能力提升題組 13.設(shè)an=-3n2+15n-18,則數(shù)列{an}中的最大項(xiàng)的值是( ) A. B. C.4 D.0 解析 ∵an=-3+,由二次函數(shù)性質(zhì),得當(dāng)n=2或3時(shí),an最大,最大為0. 答案 D 14.(2018·杭州調(diào)考)已知數(shù)列{an}滿足an+2=an+1-an,且a1=2,a2=3,則a2 019的值為_(kāi)_______. 解析 由題意得,a3=a2-a1=1,a4=a3-a2=-2,a5=a4-a3=-3,a6=a5-a4=-1
26、,a7=a6-a5=2,∴數(shù)列{an}是周期為6的周期數(shù)列,而2 019=6×336+3, ∴a2 019=a3=1. 答案 1 15.(2017·金麗衢十二校聯(lián)考)對(duì)于各項(xiàng)均為整數(shù)的數(shù)列{an},如果ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”.不論數(shù)列{an}是否具有“P性質(zhì)”,如果存在與{an}不是同一數(shù)列的{bn},且{bn}同時(shí)滿足下面兩個(gè)條件: ①b1,b2,b3,…,bn是a1,a2,a3,…,an的一個(gè)排列; ②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”. 下面三個(gè)數(shù)列: ①數(shù)列{an}的前n項(xiàng)和Sn=(n2-1)
27、; ②數(shù)列1,2,3,4,5; ③1,2,3,…,11. 具有“P性質(zhì)”的為_(kāi)_______;具有“變換P性質(zhì)”的為_(kāi)_______. 解析 對(duì)于①,當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-n,∵a1=0,∴an=n2-n,∴ai+i=i2(i=1,2,3,…)為完全平方數(shù),∴數(shù)列{an}具有“P性質(zhì)”;對(duì)于②,數(shù)列1,2,3,4,5,具有“變換P性質(zhì)”,數(shù)列{bn}為3,2,1,5,4,具有“P性質(zhì)”,∴數(shù)列{an}具有“變換P性質(zhì)”;對(duì)于③,因?yàn)?1,4都只有與5的和才能構(gòu)成完全平方數(shù),所以1,2,3,…,11,不具有“變換P性質(zhì)”. 答案?、佟、? 16.(2018·臺(tái)州測(cè)試)
28、已知數(shù)列{an}中,an=1+(n∈N*,a∈R且a≠0).
(1)若a=-7,求數(shù)列{an}中的最大項(xiàng)和最小項(xiàng)的值;
(2)若對(duì)任意的n∈N*,都有an≤a6成立,求a的取值范圍.
解 (1)∵an=1+(n∈N*,a∈R,且a≠0),
又a=-7,∴an=1+(n∈N*).
結(jié)合函數(shù)f(x)=1+的單調(diào)性,可知1>a1>a2>a3>a4,
a5>a6>a7>…>an>1(n∈N*).
∴數(shù)列{an}中的最大項(xiàng)為a5=2,最小項(xiàng)為a4=0.
(2)an=1+=1+,
已知對(duì)任意的n∈N*,都有an≤a6成立,
結(jié)合函數(shù)f(x)=1+的單調(diào)性,
可知5<<6,即-10
29、<-8.
即a的取值范圍是(-10,-8).
17.(一題多解)已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+2n,數(shù)列{bn}的前n項(xiàng)和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=a·bn,證明:當(dāng)且僅當(dāng)n≥3時(shí),cn+1<cn.
(1)解 當(dāng)n=1時(shí),a1=S1=4.
對(duì)于n≥2,有an=Sn-Sn-1=2n(n+1)-2(n-1)n=4n.
又當(dāng)n=1時(shí),a1=4適合上式,故{an}的通項(xiàng)公式an=4n.
將n=1代入Tn=2-bn,得b1=2-b1,故T1=b1=1.
(求bn法一)對(duì)于n≥2,由Tn-1=2-bn-1,Tn=2-bn,
得 30、bn=Tn-Tn-1=-(bn-bn-1),bn=bn-1,所以數(shù)列{bn}是以1為首項(xiàng),公比為的等比數(shù)列,故bn=21-n.
(求bn法二)對(duì)于n≥2,由Tn=2-bn,得Tn=2-(Tn-Tn-1),
2Tn=2+Tn-1,Tn-2=(Tn-1-2),Tn-2=21-n(T1-2)=-21-n,
Tn=2-21-n,bn=Tn-Tn-1=(2-21-n)-(2-22-n)=21-n.
又n=1時(shí),b1=1適合上式,故{bn}的通項(xiàng)公式bn=21-n.
(2)證明 (法一)由cn=a·bn=n225-n,
得=.
當(dāng)且僅當(dāng)n≥3時(shí),1+≤<,即cn+1<cn.
(法二)由cn=a·bn=n225-n,得
cn+1-cn=24-n[(n+1)2-2n2]=24-n[-(n-1)2+2].
當(dāng)且僅當(dāng)n≥3時(shí),cn+1-cn<0,即cn+1<cn.
13
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案