《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)31 數(shù)列求和 理(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)31 數(shù)列求和 理(含解析)新人教A版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課后限時集訓(xùn)(三十一) 數(shù)列求和
(建議用時:60分鐘)
A組 基礎(chǔ)達(dá)標(biāo)
一、選擇題
1.等差數(shù)列{an}中,已知公差d=,且a1+a3+…+a99=50,則a2+a4+…+a100=( )
A.50 B.75 C.100 D.125
B [∵{an}是等差數(shù)列,公差d=,
∴a2+a4+…+a100=(a1+a3+…+a99)+50d=50+50×=75.]
2.1+++…+1+++…+的值為( )
A.18+ B.20+
C.22+ D.18+
B [設(shè)an=1+++…+==2.
則原式=a1+a2+…+a11
=2+2+…+2
=2
2、
=2
=2
=2=20+.]
3.已知等比數(shù)列{an}的前n項和為Sn,若S3=7,S6=63,則數(shù)列{nan}的前n項和為( )
A.-3+(n+1)×2n B.3+(n+1)×2n
C.1+(n+1)×2n D.1+(n-1)×2n
D [設(shè)等比數(shù)列{an}的公比為q,∵S3=7,S6=63,∴q≠1,
∴解得∴an=2n-1,
∴nan=n·2n-1,
設(shè)數(shù)列{nan}的前n項和為Tn,∴Tn=1+2·2+3·22+4·23+…+(n-1)·2n-2+n·2n-1,
2Tn=2+2·22+3·23+4·24+…+(n-1)·2n-1+n·2n,
兩式相減
3、得-Tn=1+2+22+23+…+2n-1-n·2n=2n-1-n·2n=(1-n)2n-1,∴Tn=1+(n-1)×2n,故選D.]
4.(2019·湘潭模擬)已知Sn為數(shù)列{an}的前n項和,若a1=2且Sn+1=2Sn,設(shè)bn=log2an,則++…+的值是( )
A. B.
C. D.
B [由Sn+1=2Sn可知,數(shù)列{Sn}是首項為S1=a1=2,公比為2的等比數(shù)列,所以Sn=2n.當(dāng)n≥2時,an=Sn-Sn-1=2n-2n-1=2n-1.bn=log2an=當(dāng)n≥2時,==-,所以++…+=1+1-+-+…+-=2-=.故選B.]
5.已知函數(shù)f(x)=xa
4、的圖象過點(4,2),令an=,n∈N*,記數(shù)列{an}的前n項和為Sn,則S2 019=( )
A.-1 B.-1
C.-1 D.+1
C [由f(4)=2得4a=2,解得a=,則f(x)=x.
∴an===-,
S2 019=a1+a2+a3+…+a2 019=(-)+(-)+(-)+…+(-)=-1.]
二、填空題
6.設(shè)數(shù)列{an }的前n項和為Sn,且an=sin,n∈N*,則S2 018=__________.
1 [an=sin,n∈N*,顯然每連續(xù)四項的和為0.
S2 018=S4×504+a2 017+a2 018=0+1+0=1.]
7.已知數(shù)
5、列{an}滿足a1=1,an+1·an=2n(n∈N*),則S2 018=________.
3·21 009-3 [∵數(shù)列{an}滿足a1=1,an+1·an=2n,①
∴n=1時,a2=2,n≥2時,an·an-1=2n-1,②
由①÷②得=2,
∴數(shù)列{an}的奇數(shù)項、偶數(shù)項分別成等比數(shù)列,
∴S2 018=+=3·21 009-3.]
8.設(shè)Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),則Sn=________.
(-1)n-1n [當(dāng)n為偶數(shù)時,Sn=(1-3)+(5-7)+…+[(2n-3)-(2n-1)]
=(-2-2-2-…-2)=-2×=-
6、n.
當(dāng)n為奇數(shù)時,Sn=(1-3)+(5-7)+…+[(2n-5)-(2n-3)]+(2n-1)
=-2×+(2n-1)=n.
∴Sn=(-1)n-1n.]
三、解答題
9.(2018·開封一模)已知數(shù)列{an}滿足a1=1,且2nan+1-2(n+1)an=n(n+1).
(1)求數(shù)列{an}的通項公式;
(2)若bn=,求數(shù)列{bn}的前n項和Sn.
[解] (1)由已知可得-=,
∴數(shù)列是以1為首項,為公差的等差數(shù)列,
∴=,an=.
(2)∵bn=,∴bn==2×,
∴Sn=2×
=2×
=.
10.(2018·洛陽一模)已知各項均不為零的數(shù)列{an}的
7、前n項和為Sn,且對任意的n∈N*,滿足Sn=a1(an-1).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足anbn=log2an,數(shù)列{bn}的前n項和為Tn,求證:Tn<.
[解] (1)當(dāng)n=1時,a1=S1=a1(a1-1)=a-a1,
∵a1≠0,∴a1=4.
∴Sn=(an-1),∴當(dāng)n≥2時,Sn-1=(an-1-1),
兩式相減得an=4an-1(n≥2),
∴數(shù)列{an}是首項為4,公比為4的等比數(shù)列,∴an=4n.
(2)證明:∵anbn=log2an=2n,∴bn=,
∴Tn=+++…+,
Tn=+++…+,
兩式相減得Tn=++++
8、…+-=2-=2×-=--=-.
∴Tn=-<.
B組 能力提升
1.(2018·石家莊一模)已知函數(shù)f(x)的圖象關(guān)于x=-1對稱,且f(x)在(-1,+∞)上單調(diào),若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),則{an}的前100項的和為( )
A.-200 B.-100 C.0 D.-50
B [因為函數(shù)f(x)的圖象關(guān)于x=-1對稱,又函數(shù)f(x)在(-1,+∞)上單調(diào),數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),所以a50+a51=-2,所以S100==50(a50+a51)=-100,故選B.]
2.(2019
9、·鄭州模擬)在數(shù)列{an}中,若對任意的n∈N*均有an+an+1+an+2為定值,且a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=( )
A.132 B.299 C.68 D.99
B [因為在數(shù)列{an}中,若對任意的n∈N*均有an+an+1+an+2為定值,所以an+3=an,即數(shù)列{an}中各項是以3為周期呈周期變化的.因為a7=2,a9=3,a98=a3×30+8=a8=4,所以a1+a2+a3=a7+a8+a9=2+4+3=9,所以S100=33×(a1+a2+a3)+a100=33×9+a7=299,故選B.]
3.(2019·濟(jì)南模擬
10、)如圖,將平面直角坐標(biāo)系中的格點(橫、縱坐標(biāo)均為整數(shù)的點)按如下規(guī)則標(biāo)上標(biāo)簽:原點處標(biāo)數(shù)字0,記為a0;點(1,0)處標(biāo)數(shù)字1,記為a1;點(1,-1)處標(biāo)數(shù)字0,記為a2;點(0,-1)處標(biāo)數(shù)字-1,記為a3;點(-1,-1)處標(biāo)數(shù)字-2,記為a4;點(-1,0)處標(biāo)數(shù)字-1,記為a5;點(-1,1)處標(biāo)數(shù)字0,記為a6;點(0,1)處標(biāo)數(shù)字1,記為a7;……以此類推,格點坐標(biāo)為(i,j)的點處所標(biāo)的數(shù)字為i+j(i,j均為整數(shù)),記Sn=a1+a2+…+an,則S2 018=________.
-249 [設(shè)an的坐標(biāo)為(x,y),則an=x+y.第一圈從點(1,0)到點(1,1)共8個
11、點,由對稱性可知a1+a2+…+a8=0;第二圈從點(2,1)到點(2,2)共16個點,由對稱性可知a9+a10+…+a24=0,……以此類推,可得第n圈的8n個點對應(yīng)的這8n項的和也為0.設(shè)a2 018在第k圈,則8+16+…+8k=4k(k+1),由此可知前22圈共有2 024個數(shù),故S2 024=0,則S2 018=S2 024-(a2 024+a2 023+…+a2 019),a2 024所在點的坐標(biāo)為(22,22),a2 024=22+22,a2 023所在點的坐標(biāo)為(21,22),a2 023=21+22,以此類推,可得a2 022=20+22,a2 021=19+22,a2 02
12、0=18+22,a2 019=17+22,所以a2 024+a2 023+…+a2 019=249,故S2 018=-249.]
4.各項均為正數(shù)的數(shù)列{an}的首項a1=,前n項和為Sn,且Sn+1+Sn=λa.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=λnan,求{bn}的前n項和Tn.
[解] (1)因為Sn+1+Sn=λa,①
所以當(dāng)n≥2時,Sn+Sn-1=λa,②
①-②得,an+1+an=λa-λa,即an+1+an=λ(an+1+an)·(an+1-an),
因為{an}的各項均為正數(shù),所以an+1+an>0,且λ>0,
所以an+1-an=
13、(n≥2).
由①知,S2+S1=λa,即2a1+a2=λa,又a1=,所以a2=.
所以a2-a1=.
故an+1-an=(n∈N*),
所以數(shù)列{an}是首項為,公差為的等差數(shù)列,
所以an=+(n-1)·=.
(2)由(1)得an=,所以bn=n·λn-1,
所以Tn=1+2λ+3λ2+…+(n-1)λn-2+nλn-1,③
λTn=λ+2λ2+3λ3+…+(n-1)λn-1+nλn,④
③-④得(1-λ)Tn=1+λ+λ2+…+λn-1-nλn,
當(dāng)λ>0且λ≠1時,(1-λ)Tn=-nλn,
得Tn=-,
當(dāng)λ=1時,由③得Tn=1+2+3+…+(n-1)+n==.
綜上,數(shù)列{bn}的前n項和Tn=
- 6 -