《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 滿分示范課練習(xí) 文(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題五 解析幾何 滿分示范課練習(xí) 文(含解析)(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、滿分示范課——解析幾何
解析幾何部分知識(shí)點(diǎn)多,運(yùn)算量大,能力要求高,在高考試題中大都是在壓軸題的位置出現(xiàn),是考生“未考先怕”的題型之一,不是怕解題無思路,而是怕解題過程中繁雜的運(yùn)算.
在遵循“設(shè)——列——解”程序化運(yùn)算的基礎(chǔ)上,應(yīng)突出解析幾何“設(shè)”的重要性,以克服平時(shí)重思路方法、輕運(yùn)算技巧的頑疾,突破如何避繁就簡(jiǎn)這一瓶頸.
【典例】 (滿分12分)(2018·全國卷Ⅰ)設(shè)橢圓C:+y2=1的右焦點(diǎn)為F,過F的直線l與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(2,0).
(1)當(dāng)l與x軸垂直時(shí),求直線AM的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),證明:∠OMA=∠OMB.
[規(guī)范解答] (1)由已知得F
2、(1,0),l的方程為x=1.
把x=1代入橢圓方程+y2=1,
得點(diǎn)A的坐標(biāo)為或.
又M(2,0),所以AM的方程為y=-x+或y=x-.
(2)當(dāng)l與x軸重合時(shí),∠OMA=∠OMB=0°.
當(dāng)l與x軸垂直時(shí),OM為AB的垂直平分線,
所以∠OMA=∠OMB.
當(dāng)l與x軸不重合也不垂直時(shí),設(shè)l的方程為y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),
則x1<,x2<,直線MA,MB的斜率之和為kMA+kMB=+.
由y1=k(x1-1),y2=k(x2-1)得
kMA+kMB=.
將y=k(x-1)代入+y2=1得
(2k2+1)x2-4k2x+2k2
3、-2=0.
所以x1+x2=,x1x2=.
則2kx1x2-3k(x1+x2)+4k==0.
從而kMA+kMB=0,故MA,MB的傾斜角互補(bǔ).
所以∠OMA=∠OMB.
綜上,∠OMA=∠OMB.
高考狀元滿分心得
1.得步驟分:抓住得分點(diǎn)的步驟,“步步為贏”,求得滿分.
如第(1)問求出點(diǎn)A的坐標(biāo),第(2)問求kMA+kMB=0,判定MA,MB的傾斜角互補(bǔ).
2.得關(guān)鍵分:解題過程中不可忽視關(guān)鍵點(diǎn),有則給分,無則沒分.如第(1)問中求出直線AM的方程,第(2)問討論直線與坐標(biāo)軸是否垂直,將直線y=k(x-1)與+y2=1聯(lián)立得(2k2+1)x2-4k2x+2k2-2=0.
4、
3.得計(jì)算分:解題過程中計(jì)算準(zhǔn)確是滿分的根本保證.如第(1)問求對(duì)點(diǎn)M坐標(biāo)與直線AM的方程;第(2)問中正確運(yùn)算出x1+x2=,x1x2=,求出kMA+kMB=0,否則將導(dǎo)致失分.
[解題程序] 第一步:由橢圓方程,求焦點(diǎn)F及直線l.
第二步:求點(diǎn)A的坐標(biāo),進(jìn)而得直線AM的方程.
第三步:討論直線的斜率為0或不存在時(shí),驗(yàn)證∠OMA=
∠OMB.
第四步:聯(lián)立方程,用k表示x1+x2與x1x2.
第五步:計(jì)算kMA+kMB=0,進(jìn)而得∠OMA=∠OMB.
第六步:反思總結(jié),規(guī)范解題步驟.
[跟蹤訓(xùn)練]
1.已知橢圓C:+=1(a>b>0)的短軸長(zhǎng)等于2,橢圓上的點(diǎn)到右焦點(diǎn)F
5、最遠(yuǎn)距離為3.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),過F的直線與C交于A、B兩點(diǎn)(A、B不在x軸上),若=+,且E在橢圓上,求四邊形AOBE面積.
解:(1)由題意,2b=2,知b=.
又a+c=3,a2=b2+c2=3+c2,
所以可得a=2,且c=1.
因此橢圓C的方程為+=1.
(2)F(1,0).直線AB的斜率不為0,設(shè)直線AB的方程:x=my+1,A(x1,y1),B(x2,y2),聯(lián)立
得(3m2+4)y2+6my-9=0.
由根與系數(shù)的關(guān)系,得
故AB的中點(diǎn)為N.
又+=2=,故E的坐標(biāo)為.
因?yàn)镋點(diǎn)在橢圓上,所以×+×=1,
化簡(jiǎn)得9m4+1
6、2m2=0,故m2=0,
此時(shí)直線AB:x=1,
S四邊形AOBE=2S△AOE=2×=3.
2.(2019·長(zhǎng)沙模擬一中)設(shè)橢圓C:+=1(a>b>0),定義橢圓C的“相關(guān)圓”E的方程為x2+y2=.若拋物線x2=4y的焦點(diǎn)與橢圓C的一個(gè)焦點(diǎn)重合,且橢圓C短軸的一個(gè)端點(diǎn)和其兩個(gè)焦點(diǎn)構(gòu)成直角三角形.
(1)求橢圓C的方程和“相關(guān)圓”E的方程;
(2)過“相關(guān)圓”E上任意一點(diǎn)P的直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn),若OA⊥OB,證明原點(diǎn)O到直線AB的距離是定值,并求m的取值范圍.
解:(1)因?yàn)閽佄锞€x2=4y的焦點(diǎn)為(0,1).
依題意橢圓C的一個(gè)焦點(diǎn)為(0
7、,1),知c=1,
又橢圓C短軸的一個(gè)端點(diǎn)和其兩個(gè)焦點(diǎn)構(gòu)成直角三角形,則b=c=1.
故橢圓C的方程為+x2=1,
“相關(guān)圓”E的方程為x2+y2=.
(2)設(shè)A(x1,y1),B(x2,y2),
聯(lián)立方程組得(2+k2)x2+2kmx+m2-2=0,
Δ=4k2m2-4(2+k2)(m2-2)=8(k2-m2+2)>0,
即k2-m2+2>0,
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=-+m2=.
由條件OA⊥OB得,·=0,即3m2-2k2-2=0,
所以原點(diǎn)O到直線l的距離d==,
由3m2-2k2-2=0得d=為定值.
由Δ>0,
即k2-m2+2>0,所以-m2+2>0,
即m2+2>0,恒成立.
又k2=≥0,即3m2≥2,所以m2≥,
即m≥或m≤-,綜上,m≥或m≤-.
- 5 -