5、解. (2)含參恒成立或存在性問題,可轉化為函數最值問題;若能分離參數,可先分離. 特別提醒(1)f(x0)0是函數yf(x)在xx0處取得極值的必要不充分條件. (2)函數f(x)在a,b上有唯一一個極值點,這個極值點就是最值點.,8.(2017全國)若x2是函數f(x)(x2ax1)ex1的極值點,則f(x)的極小值為 A.1 B.2e3 C.5e3 D.1,,解析,答案,解析函數f(x)(x2ax1)ex1, 則f(x)(2xa)ex1(x2ax1)ex1 ex1x2(a2)xa1. 由x2是函數f(x)的極值點, 得f(2)e3(42a4a1)(a1)e30, 所
6、以a1. 所以f(x)(x2x1)ex1, f(x)ex1(x2x2). 由ex10恒成立,得當x2或x1時,f(x)0,且當x2時,f(x)0;,當2x1時,f(x)0; 當x1時,f(x)0. 所以x1是函數f(x)的極小值點. 所以函數f(x)的極小值為f(1)1. 故選A.,,解析,答案,10.(2018江蘇)若函數f(x)2x3ax21(aR)在(0,)內有且只有一個零點,則f(x)在1,1上的最大值與最小值的和為_____.,解析,答案,3,解析f(x)6x22ax2x(3xa)(x0). 當a0時,f(x)0,f(x)在(0,)上單調遞增, 又f(0)1,f(x)在(0,)上無零
7、點,不合題意.,此時f(x)2x33x21,f(x)6x(x1), 當x1,1時,f(x)在1,0上單調遞增,在(0,1上單調遞減. 又f(1)0,f(1)4,f(0)1, f(x)maxf(x)minf(0)f(1)143.,11.已知函數f(x)x33ax(aR),函數g(x)ln x,若在區(qū)間1,2上f(x)的 圖象恒在g(x)的圖象的上方(沒有公共點),則實數a的取值范圍是_________.,解析,答案,1x2,h(x)0, h(x)在1,2上單調遞增, h(x)minh(1)1,,1.已知f(x)ln x,g(x) 直線l與函數f(x),g(x)的圖象都相切,且與f
8、(x)圖象的切點為(1,f(1)),則m等于 A.1 B.3 C.4 D.2,,易錯易混專項練,,解析,答案,直線l的斜率為kf(1)1. 又f(1)0,切線l的方程為yx1. g(x)xm, 設直線l與g(x)的圖象的切點為(x0,y0),,于是解得m2.故選D.,,解析,答案,解析方法一(特殊值法),不具備在(,)上單調遞增,排除A,B,D.故選C.,方法二(綜合法),3.函數f(x)的定義域為開區(qū)間(a,b),導函數f(x)在(a,b)內的圖象如圖所示,則函數f(x)在開區(qū)間(a,b)內的極小值點有 A.1個 B.2個 C.3個 D.4個,,解析,答案,解析由極小值的定
9、義及導函數f(x)的圖象可知, f(x)在開區(qū)間(a,b)內有1個極小值點.,4.若直線ya分別與直線y2(x1),曲線yxln x交于點A,B,則|AB|的最小值為____.,解析,答案,設方程xln xa的根為t(t0),則tln ta,,令g(t)0,得t1. 當t(0,1)時,g(t)0,g(t)單調遞減; 當t(1,)時,g(t)0,g(t)單調遞增,,解題秘籍(1)對于未知切點的切線問題,一般要先設出切點. (2)f(x)遞增的充要條件是f(x)0,且f(x)在任意區(qū)間內不恒為零. (3)利用導數求解函數的極值、最值問題要利用數形結合思想,根據條件和結論的聯(lián)系靈活進行轉化.,解析利
10、用導數與函數的單調性進行驗證.f(x)0的解集對應yf(x)的增區(qū)間,f(x)<0的解集對應yf(x)的減區(qū)間,驗證只有D選項符合.,1,2,3,4,5,6,7,8,9,10,11,12,,高考押題沖刺練,1.函數yf(x)的導函數yf(x)的圖象如圖所示,則函數yf(x)的圖象可能是,解析,答案,,1,2,3,4,5,6,7,8,9,10,11,12,2.函數f(x)(x3)ex的單調遞增區(qū)間是 A.(,2) B.(0,3) C.(1,4) D.(2,),,解析,答案,解析函數f(x)(x3)ex的導函數為f(x)(x3)exex(x3)ex(x2)ex. 由函數導數與函數
11、單調性的關系,得當f(x)0時,函數f(x)單調遞增, 此時由不等式f(x)(x2)ex0,解得x2.,1,2,3,4,5,6,7,8,9,10,11,12,A.4m5 B.2m4 C.m2 D.m4,,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,可得x2mx40在區(qū)間1,2上恒成立,,1,2,3,4,5,6,7,8,9,10,11,12,4.若函數f(x)(x1)ex,則下列命題正確的是,,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,解析f(x)(x2)ex, 當x2時,f(x)0,f(x)為增函數; 當x<2時,f(x)<0,
12、f(x)為減函數.,1,2,3,4,5,6,7,8,9,10,11,12,A.x|x2 013 B.x|x2 013 C.x|2 013x0 D.x|2 018x2 013,,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,解析構造函數g(x)x2f(x),則g(x)x2f(x)xf(x). 當x0時,2f(x)xf(x)0, g(x)0, g(x)在(0,)上單調遞增.,當x2 0180,即x2 018時,(x2 018)2f(x2 018)52f(5), 即g(x2 018)g(5), 0
13、值點的個數是 A.0 B.1 C.2 D.無數,1,2,3,4,5,6,7,8,9,10,11,12,,解析,答案,解析函數定義域為(0,),,由于x0,方程6x22x10中的200恒成立, 即f(x)在定義域上單調遞增,無極值點.,1,2,3,4,5,6,7,8,9,10,11,12,7.設aR,若函數yexax,xR有大于零的極值點,則,,解析,答案,解析yexax,yexa. 函數yexax有大于零的極值點, 則方程yexa0有大于零的解. 當x0時,ex<1,aex<1.,1,2,3,4,5,6,7,8,9,10,11,12,,解析,答案,1,2,3,4,5,6,7,8,9,10,11
14、,12,解析因為f(x)x3x2a,所以由題意可知,f(x)3x22x在區(qū)間0,a上存在x1,x2(0 x1x2a),,所以方程3x22xa2a在區(qū)間(0,a)上有兩個不相等的實根.,令g(x)3x22xa2a(0 xa),,1,2,3,4,5,6,7,8,9,10,11,12,9.已知函數f(x)axln x,aR,若f(e)3,則a的值為_____.,解析,答案,解析因為f(x)a(1ln x),aR,f(e)3,,1,2,3,4,5,6,7,8,9,10,11,12,解析,答案,1e,當x(0,1)時,f(x)1時,f(x)0,函數f(x)單調遞增. 當x1時,f(x)取到極小值e1,即
15、f(x)的最小值為e1. 又f(x)為奇函數,且當x<0時,f(x)h(x), h(x)的最大值為(e1)1e.,1,2,3,4,5,6,7,8,9,10,11,12,11.若在區(qū)間0,1上存在實數x使2x(3xa)<1成立,則a的取值范圍是__________.,解析,答案,(,1),解析2x(3xa)<1可化為a<2x3x, 則在區(qū)間0,1上存在實數x使2x(3xa)<1成立等價于a<(2x3x)max,而y2x3x在0,1上單調遞減, y2x3x在0,1上的最大值為2001,a<1, 故a的取值范圍是(,1).,1,2,3,4,5,6,7,8,9,10,11,12,12.已知函數f(x) 若f(x)<0的解集中只有一個正整數,則實數k的取值范圍為_________________.,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,當x0,當x1時,g(x)<0, 所以g(x)在(,1)上單調遞增,在(1,)上單調遞減,,1,2,3,4,5,6,7,8,9,10,11,12,