(福建專(zhuān))高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破3 高考中的數(shù)列課件 文

上傳人:細(xì)水****9 文檔編號(hào):158643038 上傳時(shí)間:2022-10-05 格式:PPTX 頁(yè)數(shù):32 大?。?.01MB
收藏 版權(quán)申訴 舉報(bào) 下載
(福建專(zhuān))高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破3 高考中的數(shù)列課件 文_第1頁(yè)
第1頁(yè) / 共32頁(yè)
(福建專(zhuān))高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破3 高考中的數(shù)列課件 文_第2頁(yè)
第2頁(yè) / 共32頁(yè)
(福建專(zhuān))高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破3 高考中的數(shù)列課件 文_第3頁(yè)
第3頁(yè) / 共32頁(yè)

下載文檔到電腦,查找使用更方便

7 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(福建專(zhuān))高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破3 高考中的數(shù)列課件 文》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(福建專(zhuān))高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破3 高考中的數(shù)列課件 文(32頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、高考大題專(zhuān)項(xiàng)突破三高考大題專(zhuān)項(xiàng)突破三高考中的數(shù)列高考中的數(shù)列-2-從近五年高考試題分析來(lái)看,高考數(shù)列解答題主要題型有:等差、等比數(shù)列的綜合問(wèn)題;證明一個(gè)數(shù)列為等差或等比數(shù)列;求數(shù)列的通項(xiàng)及非等差、等比數(shù)列的前n項(xiàng)和;證明數(shù)列型不等式.命題規(guī)律是解答題每?jī)赡瓿霈F(xiàn)一次,命題特點(diǎn)是試題題型規(guī)范、方法可循、難度穩(wěn)定在中檔.-3-題型一題型二題型三題型四題型五題型一等差、等比數(shù)列的綜合問(wèn)題突破策略一公式法對(duì)于等差、等比數(shù)列,求其通項(xiàng)及求前n項(xiàng)的和時(shí),只需利用等差數(shù)列或等比數(shù)列的通項(xiàng)公式及求和公式求解即可.例1(2017北京,文15)已知等差數(shù)列an和等比數(shù)列bn滿(mǎn)足a1=b1=1,a2+a4=10,b2

2、b4=a5.(1)求an的通項(xiàng)公式;(2)求和:b1+b3+b5+b2n-1.解(1)設(shè)等差數(shù)列an的公差為d.因?yàn)閍2+a4=10,所以2a1+4d=10.解得d=2.所以an=2n-1.(2)設(shè)等比數(shù)列bn的公比為q.因?yàn)閎2b4=a5,所以b1qb1q3=9.解得q2=3.所以b2n-1=b1q2n-2=3n-1.從而b1+b3+b5+b2n-1=1+3+32+3n-1=.-4-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練1在等比數(shù)列an中,已知a1=2,a4=16.(1)求數(shù)列an的通項(xiàng)公式.(2)若a3,a5分別為等差數(shù)列bn的第4項(xiàng)和第16項(xiàng),試求數(shù)列bn的通項(xiàng)公式及其前n項(xiàng)和S

3、n.解(1)設(shè)an的公比為q,由已知得16=2q3,解得q=2.an=2n.(2)由(1)得a3=8,a5=32,則b4=8,b16=32.-5-題型一題型二題型三題型四題型五突破策略二轉(zhuǎn)化法無(wú)論是求數(shù)列的通項(xiàng)還是求數(shù)列的前n項(xiàng)和,都可以通過(guò)變形、整理,把數(shù)列轉(zhuǎn)化為等差數(shù)列或等比數(shù)列,進(jìn)而利用等差數(shù)列或等比數(shù)列的通項(xiàng)公式或求和公式解決問(wèn)題.例2在數(shù)列an中,a1=1,數(shù)列an+1-3an是首項(xiàng)為9,公比為3的等比數(shù)列.(1)求a2,a3;(2)求數(shù)列 的前n項(xiàng)和Sn.解(1)數(shù)列an+1-3an是首項(xiàng)為9,公比為3的等比數(shù)列,an+1-3an=93n-1=3n+1.a2-3a1=9,a3-3a

4、2=27.a2=12,a3=63.-6-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練2設(shè)an是公比大于1的等比數(shù)列,Sn為數(shù)列an的前n項(xiàng)和,已知S3=7,且a1+3,3a2,a3+4成等差數(shù)列.(1)求數(shù)列an的通項(xiàng)公式;(2)令bn=ln a3n+1,n=1,2,求數(shù)列bn的前n項(xiàng)和Tn.-7-題型一題型二題型三題型四題型五-8-題型一題型二題型三題型四題型五題型二證明數(shù)列為等差或等比數(shù)列突破策略一定義法-9-題型一題型二題型三題型四題型五例3已知數(shù)列an是等差數(shù)列,且a1,a2(a1a2)分別為方程x2-6x+5=0的兩根.(1)求數(shù)列an的前n項(xiàng)和Sn;(1)解 解方程x2-6x+5

5、=0得其兩根分別為1和5,a1,a2(a1a2)分別為方程x2-6x+5=0的兩根,a1=1,a2=5,等差數(shù)列an的公差為4,bn+1-bn=2(n+1)-2n=2,b1=2,bn是以2為首項(xiàng),公差為2的等差數(shù)列.-10-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練3(2017全國(guó),文17)設(shè)Sn為等比數(shù)列an的前n項(xiàng)和,已知S2=2,S3=-6.(1)求an的通項(xiàng)公式;(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.-11-題型一題型二題型三題型四題型五突破策略二遞推相減化歸法對(duì)已知數(shù)列an與Sn的關(guān)系,證明an為等差或等比數(shù)列的問(wèn)題,解題思路為:由an與Sn的關(guān)系遞推出n為

6、n+1時(shí)的關(guān)系式,兩關(guān)系式相減后,進(jìn)行化簡(jiǎn)、整理,最終化歸為用定義法證明.例4已知數(shù)列an的前n項(xiàng)和為Sn,Sn=(m+1)-man對(duì)任意的nN*都成立,其中m為常數(shù),且m-1.(1)求證:數(shù)列an是等比數(shù)列;(2)記數(shù)列an的公比為q,設(shè)q=f(m),若數(shù)列bn滿(mǎn)足b1=a1,bn=f(bn-1)(n2,nN*).求證:數(shù)列 是等差數(shù)列;(3)在(2)的條件下,設(shè)cn=bnbn+1,數(shù)列cn的前n項(xiàng)和為T(mén)n,求證:Tn1時(shí),3Sn-1=an-1,-得3(Sn-Sn-1)=3an=an+1-an,則an+1=4an,又a2=3a1+1=4=4a1,數(shù)列an是首項(xiàng)為1,公比為4的等比數(shù)列,則an

7、=4n-1.(2)由(1)得a2=4,S3=21,-23-題型一題型二題型三題型四題型五題型四數(shù)列型不等式的證明突破策略放縮法要證明關(guān)于一個(gè)數(shù)列的前n項(xiàng)和的不等式,一般有兩種思路:一是先求和再對(duì)和式放縮;二是先對(duì)數(shù)列的通項(xiàng)放縮再求數(shù)列的和,必要時(shí)對(duì)其和再放縮.例7(2017廣東佛山一模,文17)已知數(shù)列an的前n項(xiàng)和為Sn,且滿(mǎn)足Sn=an+n2-1(nN*).(1)求an的通項(xiàng)公式;-24-題型一題型二題型三題型四題型五(1)解 Sn=an+n2-1(nN*),a1+a2=a2+22-1,解得a1=3.當(dāng)n2時(shí),an=Sn-Sn-1=an+n2-1-an-1+(n-1)2-1,整理得an-1

8、=2n-1,可得an=2n+1,當(dāng)n=1時(shí)也成立.an=2n+1.(2)證明 由(1)可得Sn=2n+1+n2-1=n2+2n.-25-題型一題型二題型三題型四題型五對(duì)點(diǎn)訓(xùn)練對(duì)點(diǎn)訓(xùn)練7(2017貴州貴陽(yáng)二模)設(shè)Sn是數(shù)列an的前n項(xiàng)和,an0,且4Sn=an(an+2).(1)求數(shù)列an的通項(xiàng)公式;-26-題型一題型二題型三題型四題型五-27-題型一題型二題型三題型四題型五題型五數(shù)列中的存在性問(wèn)題突破策略存在順推法求解數(shù)列中的存在性問(wèn)題,先假設(shè)所探求對(duì)象存在或結(jié)論成立,再以此假設(shè)為前提條件進(jìn)行運(yùn)算或邏輯推理,若由此推出矛盾,則假設(shè)不成立,即不存在;若推不出矛盾,則得到存在的結(jié)果.例8已知數(shù)列a

9、n的前n項(xiàng)和為Sn,a1=1,an0,anan+1=Sn-1,其中為常數(shù).(1)證明an+2-an=.(2)是否存在,使得an為等差數(shù)列?并說(shuō)明理由.-28-題型一題型二題型三題型四題型五(1)證明 因?yàn)閍nan+1=Sn-1,所以an+1an+2=Sn+1-1.兩式相減,得an+1(an+2-an)=an+1.因?yàn)閍n+10,所以an+2-an=.(2)解 由題設(shè),a1=1,a1a2=S1-1,可得a2=-1.由(1)知,a3=+1.令2a2=a1+a3,解得=4.故an+2-an=4.由此可得a2n-1是首項(xiàng)為1,公差為4的等差數(shù)列,a2n-1=4n-3;a2n是首項(xiàng)為3,公差為4的等差數(shù)列,a2n=4n-1.所以an=2n-1,即an+1-an=2.因此存在=4,使得數(shù)列an為等差數(shù)列.-29-題型一題型二題型三題型四題型五-30-題型一題型二題型三題型四題型五-31-32-

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!