陽明大學(xué)放射醫(yī)學(xué)科學(xué)研究所.ppt

上傳人:za****8 文檔編號:16044546 上傳時(shí)間:2020-09-16 格式:PPT 頁數(shù):47 大?。?.32MB
收藏 版權(quán)申訴 舉報(bào) 下載
陽明大學(xué)放射醫(yī)學(xué)科學(xué)研究所.ppt_第1頁
第1頁 / 共47頁
陽明大學(xué)放射醫(yī)學(xué)科學(xué)研究所.ppt_第2頁
第2頁 / 共47頁
陽明大學(xué)放射醫(yī)學(xué)科學(xué)研究所.ppt_第3頁
第3頁 / 共47頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《陽明大學(xué)放射醫(yī)學(xué)科學(xué)研究所.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《陽明大學(xué)放射醫(yī)學(xué)科學(xué)研究所.ppt(47頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、Haar Wavelet Analysis,吳育德 陽明大學(xué)放射醫(yī)學(xué)科學(xué)研究所 臺(tái)北榮總整合性腦功能實(shí)驗(yàn)室,A First Course in Wavelets with Fourier Analysis Albert Boggess Francis J. Narcowich Prentice-Hall, Inc., 2001,Outlines,Why Wavelet Haar Wavelets The Haar Scaling Function Basic Properties of the Haar Scaling Function The Haar Wavelet Haar Decomp

2、osition and Reconstruction Algorithms Decomposition Reconstruction Filters and Diagrams Summary,4.1 Why Wavelet,Wavelets were first applied in geophysics to analyze data from seismic surveys. Seismic survey,,,,,,,,,,,,,,geophones,seismic trace,,Sesimic trace,Direct wave (along the surface) Subsequen

3、t waves (rock layers below ground),Fourier Transform (FT) is not a good tool gives no direct information about when an oscillation occurred. Short-time FT : equal time interval, high- frequency bursts occur are hard to detect. Wavelets can keep track of time and frequency information. They can be us

4、ed to “zoom in” on the short bursts, or to “zoom out” to detect long, slow oscillations,frequency,frequency + time (equal time intervals),frequency + time,4.2 Haar Wavelets 4.2.1 The Haar Scaling Function,Wavelet functions Scaling function (father wavelet) Wavelet (mother wavelet) These two function

5、s generate a family of functions that can be used to break up or reconstruct a signal The Haar Scaling Function Translation Dilation,Using Haar blocks to approximate a signal,High-frequency noise shows up as tall, thin blocks. Needs an algorithm that eliminates the noise and not distribute the rest

6、of the signal. Disadvantages of Harr wavelet: discontinuous and does not approximate continuous signals very well.,Figure 2,Daubechies 8,Dubieties 3,Daubechies 4,Chap 6,4.2.2 Basic Properties of the Haar Scaling Function,The Haar Scaling function is defined as,(x-k) : same graph but translated by to

7、 the right (if k0) by k units Let V0 be the space of all functions of the form,V0 consists of all piecewise constant functions whose discontinuities are contained in the set of integers V0 has compact support.,Typical element in V0,Figure 5,Figure 6,has discontinuities at x=0,1,3, and 4,Let V1 be th

8、e space of piecewise constant functions of finite support with discontinuities at the half integers,has discontinuities at x=0,1/2,3/2, and 2,,Suppose j is any nonnegative integer. The space of step functions at level j, denoted by Vj , , is defined to be the space spanned by the set,,over the real

9、numbers.,Vj is the space of piecewise constant functions of finite support whose discontinuities are contained in the set,means no information is lost as the resolution gets finer. Vj contains all relevant information up to a resolution scale order 2-j,A function f(x) belongs to V0 iff f(2jx) belong

10、s to Vj,A function f(x) belongs to Vj iff f(2-jx) belongs to V0,How to decompose a signal into its Vj-components,When j is large, the graph of (2j x) is similar to one of the spikes of a signal that we may wish to filter out. One way is to construct an orthonormal basis for Vj using the L2 inner pro

11、duct,Theorem:,4.2.4 The Haar Wavelet,We want to isolate the spikes that belong to Vj, but that are not members of Vj-1 The way is to decompose Vj as an orthonormal sum of Vj-1 and its complement. Start with V1, assume the orthonormal complement of Vo is generated by translates of some functions , we

12、 need:,Harr wavelet,Theorem 4.8 (extend to Vj),Decomposing Vj,Theorem:,4.3 Haar Decomposition and Reconstruction Algorithms,Implementation,Step 1 : Approximate the original signal f by a step function of the form,Example 4.11,General decomposition scheme,Wj-1-component,,,Vj-1-component,,,Theorem 4.1

13、2 (Haar Decomposition),Example 4.13,V8-component,V7-component,V6-component,V4-component,W7-component,4.3.2 Reconstruction,General reconstruction scheme,General reconstruction scheme,Theorem 4.14 (Haar Reconstruction),Example 4.15,80% compression,90% compression,sample signal,4.3.3 Filters and Diagrams,,,k=-1,0,k=-1,0,Decomposition algorithm,downsampling operator,Reconstruction,,,k=0,1,k=0,1,,upsampling operator,Summary,,,,,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!