轎車三軸變速器系統(tǒng)設(shè)計(jì)【轎車中間軸式五檔變速器】
轎車三軸變速器系統(tǒng)設(shè)計(jì)【轎車中間軸式五檔變速器】,轎車中間軸式五檔變速器,轎車三軸變速器系統(tǒng)設(shè)計(jì)【轎車中間軸式五檔變速器】,轎車,變速器,系統(tǒng),設(shè)計(jì),中間,五檔
附錄 A:
在目前的環(huán)境和政治框架下,廢氣排放是制定任何動(dòng)力總成控制戰(zhàn)略的基本考慮因素。盡管如此,相對(duì)來(lái)說(shuō)很少發(fā)表關(guān)于優(yōu)化廢氣排放的工作。此外,燃油經(jīng)濟(jì)性不能被忽視,因?yàn)樗詫⑹呛饬寇囕v效率的一個(gè)關(guān)鍵措施。伸耳報(bào)告稱,經(jīng)濟(jì)線概念包括對(duì)廢氣排放的評(píng)價(jià)。經(jīng)濟(jì)路線法的主要缺陷是未能優(yōu)化類似 t 的排放性能。理想操作線(IOL)入路。當(dāng)對(duì)單個(gè)結(jié)果進(jìn)行優(yōu)化時(shí),例如最小的油耗,就會(huì)產(chǎn)生真正的最優(yōu)線路。如果每次投票都重復(fù)此過(guò)程說(shuō)一句不同的話,每一種情況都是由于它們的形成機(jī)制不同而產(chǎn)生的。因此,不可能達(dá)到全球最佳線。為了解決這一難題,受管制的廢氣排放是 com。與燃油經(jīng)濟(jì)性在一個(gè)加權(quán)和,這是最小化的整個(gè)發(fā)動(dòng)機(jī)的操作功率范圍[1-3]。
隨著探索改善車輛性能、經(jīng)濟(jì)和排放的范圍,車輛動(dòng)力系統(tǒng)變得越來(lái)越復(fù)雜。經(jīng)營(yíng)英語(yǔ)可能會(huì)帶來(lái)相當(dāng)大的好處。INE 和傳動(dòng)一體化,使用單個(gè)控制器來(lái)解釋駕駛員的愿望,并相應(yīng)地指示發(fā)動(dòng)機(jī)和傳動(dòng)控制器。對(duì)于這種成功至關(guān)重要系統(tǒng)是主要部件的基本規(guī)格,是動(dòng)力總成控制策略的設(shè)計(jì)。無(wú)級(jí)變速傳動(dòng)(Cvt)可以提供更好的車輛傳動(dòng)性能。調(diào)整燃料消耗和駕駛性能[4-5]。迪肯等[6]實(shí)現(xiàn)了人工智能和更傳統(tǒng)和直觀的方法,以集成的柴油 CVT 動(dòng)力系統(tǒng)和比較。現(xiàn)有控制器和等效手動(dòng)變速器(MT)動(dòng)力系統(tǒng)。底盤(pán)測(cè)功機(jī)的結(jié)果表明,新設(shè)計(jì)的控制器策略對(duì)汽車尾氣有顯著的影響。排放,而該軟件的結(jié)構(gòu)允許控制器的行動(dòng)是高度可調(diào)和靈活的,以平衡車輛的駕駛要求與經(jīng)濟(jì)和排放目標(biāo)。
整體式傳動(dòng)系統(tǒng)控制的基本概念之一是理想工作點(diǎn)(IOP),它被定義為發(fā)動(dòng)機(jī)的速度和負(fù)荷。每個(gè)控制器使用不同的 IOL 進(jìn)行三次測(cè)試,以獲得最佳的制動(dòng)比燃油經(jīng)濟(jì)性(B 證
監(jiān)會(huì))、最小氮氧化物(NOx)和最低碳?xì)浠衔?HC)的混合線[7]。Carbone 等人 8 利用無(wú)級(jí)比 CVT 自動(dòng)換擋,不需要摩擦離合器。帶有無(wú)級(jí)變速器(IVT)的中型客車的性能被研究過(guò)。采用假設(shè)的仿真模型,對(duì)汽車油耗進(jìn)行了評(píng)價(jià),并考慮了 IVT 比轉(zhuǎn)速的取值,使比油耗降至最低。我將 VT 的性能與傳統(tǒng)的 VT 進(jìn)行了比較。在 340 輛輕型車輛上收集了二次接一秒的發(fā)動(dòng)機(jī)排放和尾管排放數(shù)據(jù),并在“現(xiàn)有”條件下進(jìn)行了測(cè)試。觀測(cè)到 CO2、CO、HC 和 NOx 排放的變異性。各種駕駛模式??偨Y(jié)了利用引導(dǎo)驗(yàn)證方法進(jìn)行初始統(tǒng)計(jì)分析和模型驗(yàn)證的方法。引導(dǎo)方法在模型 d 中被證明是一個(gè)很有價(jià)值的工具。
本文在測(cè)量的基礎(chǔ)上,研究了不同行駛周期對(duì)汽油中型轎車汽車排放和油耗率的影響。通過(guò)在標(biāo)準(zhǔn)底盤(pán)測(cè)功機(jī)上駕駛它。試驗(yàn)是在歐洲標(biāo)準(zhǔn)駕駛周期(ecc-15)的城市部分進(jìn)行的,該車輛配備了綜合汽油發(fā)動(dòng)機(jī)。與 MT,自動(dòng)變速器(AT)和 CVT 動(dòng)力系統(tǒng)。摘要根據(jù)
53
已有的計(jì)算公式,給出了廢氣排放指數(shù)(EI)和 FCR 的估算方法及其效果。S 是通過(guò)測(cè)試驗(yàn)證的。
采用中型轎車三菱蘭瑟進(jìn)行了試驗(yàn)研究.其最大功率為 122 馬力在 4800 轉(zhuǎn)/分,最大扭矩 167 納米在 3600 轉(zhuǎn)/分。原始配置車輛有 MT 動(dòng)力系統(tǒng)。MT 由 AT 或 CVT 替代,并配以必要的固定附件。試驗(yàn)是在標(biāo)準(zhǔn)駕駛周期內(nèi)進(jìn)行的,在底盤(pán)測(cè)功機(jī)上執(zhí)行。第四 e 變速箱的規(guī)格列于表 1。這輛車在新歐洲駕駛周期(NEDC)上進(jìn)行了測(cè)試。這個(gè)循環(huán)是在城市周期之后立即進(jìn)行的,包括 f 半穩(wěn)態(tài)駕駛,加速,減速和一些空轉(zhuǎn)。NEDC 由 ECE 15 和 EUDC 組
成,按順序?qū)?yīng)于城市和公路的行駛條件。ECE 15 模擬 AveRAGE 速度為 18.9km/h,最高速度為 60 km/h。整個(gè)周期包括 4 個(gè)重復(fù) 780 秒的低速城市自行車,以獲得足夠的駕駛距離,如圖 1 所示。
圖 1:歐洲駕駛周期歐洲經(jīng)委會(huì)-15
Fig. 1: European driving cycle ECE-15
薩克森 TL-80 型底盤(pán)測(cè)功機(jī)模擬車輛車輪上施加的阻力功率。它由一個(gè)通過(guò)變速箱連接的測(cè)功機(jī)組成,驅(qū)動(dòng)線路直接 c。連接到一組滾輪上,把車輛放在上面??梢哉{(diào)整滾子以模擬所需的驅(qū)動(dòng)電阻[15]。因?yàn)樵囼?yàn)是在底盤(pán)測(cè)功機(jī)上進(jìn)行的對(duì)于車輛的單軸,它能夠模擬車輛的道路荷載功率需求作為車速和慣性的函數(shù)。在使用驅(qū)動(dòng)循環(huán)時(shí),負(fù)載是相對(duì)的。由氣動(dòng)系統(tǒng)來(lái)驅(qū)動(dòng),該氣動(dòng)系統(tǒng)控制帶有側(cè)躺渦流制動(dòng)器的軸負(fù)載到輥上,該輥在磨損測(cè)量系統(tǒng)上用作功率調(diào)查的信息資源。
AH 根據(jù)不同的控制參數(shù),包括車輪轉(zhuǎn)速,設(shè)置控制裝置對(duì)水流進(jìn)行監(jiān)測(cè)和改變。該試
54
驗(yàn)臺(tái)配有自動(dòng)過(guò)載保護(hù)裝置。輪胎沒(méi)有損壞。
實(shí)驗(yàn)中使用了便攜式紅外氣體分析儀。采用帶有氣體取樣探頭的 Homans 氣體分析儀,從消聲器中采集廢氣。氣體是然后過(guò)濾和干燥,然后進(jìn)入分析器。磁感應(yīng)拾取換能器以公里/小時(shí)為單位測(cè)量車速。圖 2 顯示了實(shí)驗(yàn)室底盤(pán)動(dòng)力的原理圖。和儀器系統(tǒng)。為了進(jìn)行排放試驗(yàn),收集了稀釋后的排氣混合物和稀釋空氣的連續(xù)比例樣品。氣體分析儀是用來(lái)測(cè)量稀釋后的廢氣 CO,O2,HC 和 CO2 的濃度。
圖 2 試驗(yàn)裝置和儀表系統(tǒng)示意圖
Fig.2: Schematic of test setup and instrumentation system
對(duì) MT、AT 和 CVT 動(dòng)力系統(tǒng)進(jìn)行了 100 km/h 的車輛試驗(yàn),分別給出了實(shí)測(cè)道路功率(P)
和道路扭矩(M)的響應(yīng)。的功率和扭矩值增加的時(shí)間(加速模式)高達(dá) 32 秒,值 259 納米和
21 千瓦為 MT,對(duì)應(yīng)值為 40 s,AT 值為 130 nm,12 kW;AT 值為 40.5 s,值為 150 Nm 。 40.5 千瓦用于無(wú)級(jí)變速器。減速模式描述了性能值的下降,MT 為 75s,AT 為 54s,CVT 為52.5s。路面扭矩對(duì) MT 有一定的波動(dòng)。圖 3 至 5 展示的是測(cè)量時(shí)間(T)和距離(S),從這兩個(gè)測(cè)量中分別計(jì)算加速度(A)對(duì)所考慮的傳輸。對(duì)于 MT,大約 18.34 秒,r 可以獲得 145
米的距離。瞬時(shí)速度為 105 km/h,加速度為 5.73m/s2,在 22.5 s 內(nèi)可獲得 360 m,瞬時(shí)速度為 4.49m/s2。對(duì)于 CVT,在 19.17 s 內(nèi)可獲得 100 m 的距離,瞬時(shí)速度為 101 km/h
時(shí),加速度為 5.27m/s2。
55
圖 3 車輛行駛速度和距離
Fig. 3: Vehicle speed and distance for MT
圖 4 AT 的車速和距離
Fig. 4: Vehicle speed and distance for AT
56
圖 5 無(wú)級(jí)變速器的車速和距離
Fig. 5: Vehicle speed and distance for CVT
電子控制和系統(tǒng)集成等關(guān)鍵技術(shù)近年來(lái)取得了重大進(jìn)展,并為自動(dòng)機(jī)械傳動(dòng)基礎(chǔ)
(AMT)。形成了扎實(shí)的技術(shù)。AMT 是來(lái)自傳統(tǒng)的手動(dòng)變速器,結(jié)構(gòu)緊湊,響應(yīng)速度快且高機(jī)械效率。但質(zhì)量差是制約其應(yīng)用的主要因素。目前關(guān)于改進(jìn) AMT 變換質(zhì)量的研究主要集中在選擇不同形式的移位驅(qū)動(dòng)裝置,優(yōu)化同步器的結(jié)構(gòu),制定更好的位移控制策略等。
目前,自動(dòng)機(jī)械傳動(dòng)的位移驅(qū)動(dòng)裝置可分為電子氣動(dòng)移位、電子液壓移位、全電位移和直接驅(qū)動(dòng)轉(zhuǎn)換等,而這些形式的移位驅(qū)動(dòng)裝置已經(jīng)實(shí)現(xiàn)了一些應(yīng)用。同步器的性能是影響換擋質(zhì)量的因素之一,同步器的結(jié)構(gòu)優(yōu)化是提高自動(dòng)機(jī)械傳動(dòng)換擋質(zhì)量的有效途徑。研究小組研究了伺服同步器,其功能是自我激勵(lì),提高了系統(tǒng)的魯棒性。初步實(shí)驗(yàn)表明,該方法能夠降低控制系統(tǒng)的設(shè)計(jì)難度。以此為參考發(fā)明了防止移位二次沖擊的同步器結(jié)構(gòu),在同步器套筒上有調(diào)整齒輪,防止同步器套筒內(nèi)樣條和目標(biāo)齒輪的關(guān)節(jié)環(huán)齒輪之間的二次沖擊。為了獲得更好的轉(zhuǎn)移控制策略,國(guó)內(nèi)外研究機(jī)構(gòu)完成了許多研究。另一方面,對(duì)變速箱、發(fā)動(dòng)機(jī)和離合器協(xié)調(diào)控制的質(zhì)量控制策略進(jìn)行了調(diào)整和提出。并在參考文獻(xiàn)中完成了基于模糊算法的系列齒輪過(guò)程控制器。應(yīng)指出,該研究促進(jìn)了 AMT 轉(zhuǎn)移質(zhì)量的提高,但仍有一定的改進(jìn)空間。為了提高位移控制的精度,減少自動(dòng)機(jī)械傳動(dòng)的位移沖擊,因此提出了基于位移位移補(bǔ)償?shù)?AMT 位移控制策略。研究對(duì)象為國(guó)產(chǎn) 5 檔手動(dòng)變速箱,建立了基于 ABAQUS 的有限元分析模型,確定了平移驅(qū)動(dòng)力與位移叉的變形之間的關(guān)系,并在制定
57
了相應(yīng)的位移控制策略后,在系統(tǒng)原型上完成了相關(guān)研究。
速度差信號(hào)是確定同步相位是否結(jié)束的條件之一,它可以防止位移驅(qū)動(dòng)力的誤差輸
出,但在試驗(yàn)研究中發(fā)現(xiàn),移位裝置的驅(qū)動(dòng)力需要一定的響應(yīng)時(shí)間。這將導(dǎo)致一個(gè)大輸出
功率損失的速度控制系統(tǒng)在等待的過(guò)程中速度差信號(hào)為零和擴(kuò)展電源中斷時(shí),由于傳動(dòng)軸
的扭轉(zhuǎn)振動(dòng),保證速度差信號(hào)的準(zhǔn)確性是很困難的。
為了更好地解決移叉變形對(duì)位移控制精度的影響,提出了一種基于位移位移的移位控
制策略。試驗(yàn)所用的試驗(yàn)臺(tái)如圖 1 所示,利用慣性模擬裝置模擬不同車輛模型的同步部分
的轉(zhuǎn)動(dòng)慣量,采用變頻電機(jī)模擬不同位移條件下的輸入和輸出軸速度差。
圖 6 試驗(yàn)臺(tái)
Figure 6 Test bed
慣性值和輸出軸,輸入軸速度區(qū)別在同步設(shè)置在于測(cè)試之前,驅(qū)動(dòng)變頻電機(jī)的輸入軸通過(guò)控制器,當(dāng)速度傳感器的反饋信號(hào)達(dá)到預(yù)定值時(shí),關(guān)閉變頻電機(jī)直接驅(qū)動(dòng)設(shè)備開(kāi)放。沒(méi)有軸向位移改變執(zhí)行機(jī)構(gòu)的同步階段,輸入電流的閉環(huán)控制策略轉(zhuǎn)變驅(qū)動(dòng)裝置,和控制致動(dòng)器的輸出力的波動(dòng),所以同步力法是獲得滿足的轉(zhuǎn)變的需求沖擊和同步器的生活。改變執(zhí)行機(jī)構(gòu)的軸向位移,控制策略在閉環(huán) PID 控制算法的基礎(chǔ)上,加快轉(zhuǎn)變行政機(jī)制的最大加速度性能,緩沖和速度,當(dāng)它達(dá)到最大速度,位移傳感器的控制器接收反饋信號(hào),并在兩端的電壓值的變化驅(qū)動(dòng)裝置是通過(guò)操作,實(shí)現(xiàn)實(shí)時(shí)控制的過(guò)程中轉(zhuǎn)變。
由于位移叉的變形,控制器接收到的位移傳感器反饋信號(hào)不反映實(shí)際位移(同步器套位移),而非同步相位移控制中閉環(huán) PID 控制策略的精度降低。因此,在位移叉分析的基礎(chǔ)上,提出了基于位移位移的位移控制策略,如圖 2 所示。
58
圖 7 位移控制策略
Fig.7 displacement control strategy
實(shí)時(shí)位移信號(hào)接收的控制器是由變速叉變形補(bǔ)償?shù)?反映了實(shí)際的位移,然后轉(zhuǎn)變驅(qū)動(dòng)
裝置的控制精度提高,實(shí)現(xiàn)一個(gè)精確的和轉(zhuǎn)移過(guò)程的實(shí)時(shí)控制和所有的傳感器信號(hào)傳輸?shù)?
主機(jī)通過(guò) can 總線計(jì)算機(jī)分析處理
59
附錄 B:
In the current environmental and political framework, exhaust emissions are fundamental considerations in the development of any powertrain control strategy. Despite this there has been comparatively little published work concerning the optimization of exhaust emissions. Additionally, fuel economy must not be neglected as it will remain as a crucial measure of vehicle efficiency. Extending the earlier work reported, the economy line concept includes an evaluation of exhaust emissions. The major flaw of the economy line approach is the failure to optimize exhaust emissions performance similar to ideal operating line (IOL) approach. When optimizing for a single outcome, such as minimum fuel consumption, a true optimum line is simply generated. If this process is repeated for each of the pollutants a different line will be generated in each case owing to their differing formation mechanisms. Thus, it is not possible to arrive at a globally optimum line. To resolve this difficulty the regulated exhaust emissions are combined with fuel economy in a weighted sum, which is minimized across the operating power range of the engine [1-3].
Vehicle powertrains are becoming increasingly complex as the scope offered to improve vehicle performance, economy and emissions is explored. Considerable benefit may be derived from operating the engine and transmission in an integrated manner, using a single controller to interpret the driver’s wish and accordingly instruct the engine and transmission controllers. Crucial to the success of such system are the basic specification of major components and the design of overall powertrain control strategy. Continuously variable transmission (CVT) can provide a better performance of vehicle concerning the fuel consumption and driveability [4-5]. Deacon et al [6] implemented artificial intelligence and more traditional and intuitive methods for an integrated diesel CVT powertrain and compared with an existing controller and equivalent manual transmission (MT) powertrain. Chassis dynamometer results show the newly designed controller strategies to have significant impact on vehicle exhaust emissions, while the structure of the software allows the controller action to be highly tuneable and flexible to balance the vehicle driveability requirements with economy and emissions targets.
One of the fundamental concepts in the integrated driveline control is the ideal operating point (IOP) which is defined as the engine speed and load which delivers.Each controller was tested three times using different IOLs for best brake specific fuel economy (BSFC), minimum Nitrogen Oxide (NOx) and a mixed line for minimum Hydrocarbon (HC) [7]. Carbone et al [8] utilized CVT with infinite ratio range for automatic gear change without the need of the friction
60
clutch. The performance of a mid passenger car provided with infinitely variable transmission (IVT) was studied. Vehicle’s fuel consumption was evaluated by means of a simulation model with the hypothesis to consider the value of IVT’s ratio speed that minimizes the specific fuel consumption.Second-by-second engine-out and tail pipe emissions data were collected on 340 light duty vehicles, tested under “as is” conditions. Variability in emissions of CO2, CO, HC and NOx were observed over various driving modes. An initial statistical analysis and model validation using bootstrap validation methods were summarized. The bootstrap methodology was shown to be a valuable tool during model.
In this work, the influence of various driving cycles on vehicle exhaust emissions and fuel consumption rate (FCR) of a gasoline midsize saloon vehicle was investigated based on the measurements obtained by driving it on a standard chassis dynamometer. The tests were carried out for urban part of the European standard driving cycle (ECE-15) for the vehicle equipped with an integrated gasoline engine with MT, automatic transmission (AT) and CVT powertrains. An estimation of emission index (EI) and FCR from the exhaust emissions based on well established formulae is provided and its effectiveness is verified through tests.
The experimental tests were carried out using in-use midsize saloon vehicle Mitsubishi Lancer. Its maximum power is 122 HP at 4800 rpm and maximum torque 167 Nm at 3600 rpm. The original configuration of vehicle had MT powertrain. The MT was replaced by either AT or CVT with the necessary fixation accessories. The tests were performed over standard driving cycle executed on chassis dynamometer. The specifications of the transmissions are listed in Table 1. The vehicle was tested over the New European Driving Cycle (NEDC). This cycle is conducted immediately after the urban cycle and consists of half steady-speed driving with accelerations, decelerations and some idling. NEDC consists of ECE15 and EUDC which correspond to urban and highway driving conditions in order. ECE15 simulates an average speed of 18.9 km/h and a maximum speed of 60 km/h. The entire cycle includes 4 repeats of 780 seconds low speed urban cycle to obtain an adequate driving distance as shown in Fig. 1.
61
Fig. 1: European driving cycle ECE-15
The chassis dynamometer type SAXON TL-80 simulates the resistive power imposed on the wheels of a vehicle. It consists of a dynamometer that is coupled via gearboxes to drive lines that are directly connected to a set of rollers upon which the vehicle is placed. The rollers can be adjusted to simulate the required driving resistance [15]. As the tests were conducted on chassis dynamometer connected to a single-axle of the vehicle, it is able to simulate the vehicle road load power demand as a function of speed and the inertia of vehicle. During application of a driving cycle, the load is controlled by a pneumatic system that controls axle load with the side lying eddy current brake to the roll, which is used on a wear-measuring system as an information resource for power investigation. A handheld controller was set to monitor and change the water flow based on a variety of control parameters including wheel speed. The test rig is equipped with an automatic overload protection to prevent damage to the tire.
Portable version of infrared gas analyzer is used during the experimental tests. A HOMANS gas analyzer equipped with gas sampling probe is used to collect the exhaust gas from the muffler. The gas is then filtered and dried before entering the analyzer. Magnetic inductivepickup transducer is used to measure the vehicle speed in km/h. Fig. 3 shows a schematic view of the laboratory chassis dynamometer and the instrumentation system. For emissions test continuously proportioned samples of diluted exhaust mixture and diluted air are collected. A gas analyzer is used to measure diluted exhaust contents of CO, O2, HC and CO2.
62
Fig. 2: Schematic of test setup and instrumentation system
Figs. 3 to5 depict responses of measured road power (P) and road torque (M) from vehicle tests at 100 km/h for MT, AT and CVT powertrains respectively. The values of power and torque increases for an increase in the time (acceleration mode) up to 32 s with values of 259 Nm and 21 kW for MT. The corresponding values of 40 s with values of 130 Nm and 12 kW for AT; and 40.5 s with values of 150 Nm and 40.5 kW for CVT. The deceleration mode depicted a decrease in performance values till 75 s for MT, 54 s for AT and 52.5 s for CVT. The road torque exhibited some fluctuations for MT. show the measurements of time (T) and distance (S) from which acceleration (A) is calculated for the considered transmissions respectively. For MT, a distance of 145 m can be gained in about 18.34 s, resulting in an acceleration of 5.73 m/s2 at instantaneous speed of 105 km/h. For AT, a distance of 360 m can be gained in about 22.5 s resulting in an acceleration of 4.49 m/s2 at instantaneous speed of 101 km/h. For CVT, a distance of 100 m can be gained in about 19.17 s resulting in acceleration of 5.27 m/s2 at instantaneous speed of 101 km/h.
63
Fig.3: Vehicle speed and distance for MT
Fig. 4: Vehicle speed and distance for AT
64
Fig.5: Vehicle speed and distance for CVT
The key technologies such as electronic control and systems integration have made significant progress in recent years, and they have established a solid technological foundation for Automated Mechanical Transmission (AMT). AMT is derived from the traditional manual transmission, it has compact structure, fast response speed and high mechanical efficiency. But the poor shift quality is the main factor forrestricting its application. The current research about improving the shift quality of AMT is focused on selecting different forms of shift drive device, optimizing the structure of synchroniser and formulating the better shift control strategy, etc.
At the present stage, the shift drive devices of automated mechanical transmission can be divided into electronic pneumatic shift, electronic hydraulic shift, all-electrical shift and direct-drive shift, and these forms of shift drive devices have achieved some applications. Synchronizer’s capability is one of the factors to affect the shift quality, and the structure optimisation of synchronizer is an effective approach to improve the shift quality of automated mechanical transmission. Studying team invited a servo synchronizer with the function of self-energizing and improved the shifting system robustness of the previous research.Preliminary experiments have shown that it can reduce the design difficulty of the control system. Reference invented a synchronizer structure of preventing shift secondary shock, and there is alignment gear on the synchronizer sleeve to prevent shift secondary shock between internal spline of synchronizer sleeve and the joint ring gear of target gear.In order to obtain a better shift control strategy, many studies were completed by domestic and foreign research institutions.On the other hand, Refs and put forward shift quality control strategy about transmission, engine and clutch
65
coordination control. And the series gear process controller based on fuzzy algorithm was completed in Ref. It should be pointed out that the study promotes the improvement of the AMT shift quality, but still have some room to improve.To improve the shift control accuracy and reduce the shift shock of Automated Mechanical Transmission, AMT shift control strategy based on shift displacement following compensation is proposed. The research object is a domestic type 5-speed manual transmission, establish the finite element analysis model based on ABAQUS, determine the relationship between shift driving force and the deformation of shift fork, and after formulating a appropriate shift control strategy,related research is completed on the system prototype.
The speed difference signal is one of the conditions to determine whether the synchronization phase is over and it can prevent the error output of the shift driving force, but in test study, it is found that the driving force of the shift device needs a certain response time. So it will cause a great output power loss for the speed control system in the process of waiting for the speed difference signal to zero and extend the time of the power interruption, and because of the torsional vibration of the transmission shaft, the accuracy of the speed difference signal is difficult to guarantee.
In order to solve the influence of shift fork deformation on shift control accuracy better, a shift control strategy based on shift displacement following compensation considering shift fork stiffness is proposed. The test bench used in the test is shown in Fig. 1, the inertia simulation device is used to simulate the rotating inertia of the synchronous part of different vehicle models, the variable frequency motor is used to simulate the input and output shaft speed difference under different shift conditions.
66
Figure 6 Test bed
The inertia value and the speed difference between the output shaft and the input shaft before the synchronous are set before testing, drive the input shaft of the variable frequency motor through the controller, when the feedback signal of the speed sensor reaches a predetermined value, turn off the variable frequency motor and open the direct drive device. There is no axial displacement of the shift executive mechanism in synchronous phase, closed loop control strategy for input current of shift drive device is used, and controlling the fluctuation of the output force of the actuator, so the synchronous force law is obtained to meet the requirements of the shift shock and the synchronizer life. Non-synchronous phase is the general name of shift phase that there is axial displacement of the shift executive mechanism, the control strategy based on the closed-loop PID control algorithm is used, which speed up the shift executive mechanism in maximum acceleration performance at first, and speed down cushion, when it reaches the maximal speed, the controller receives the feedback signal of displacement sensor, and the voltage value at the two ends of the shift drive device is obtained by operation, achieving real time control in the process of shift.
Due to the deformation of shift fork, the displacement sensor feedback signal received by the controller does not reflect the actual displacement (the synchronizer sleeve displacement), and the accuracy of the closed-loop PID control strategy in the control of the displacement of the non-synchronous phase is decreased. Therefore shift control strategy based on shift displacement following compensation under the analysis of shift fork is proposed, as it is shown in Fig. 2.
67
Fig. 7 displacement control strategy
The real-time displacement signal received by the controller is compensated by the shifting fork deformation, reflecting the actual displacement, and then the control accuracy of the shift drive device can be improved, to achieve an exact and real-time control of the shifting process and all of the sensor signals are transmitted to the host computer analysis processing through the CAN bus
68
收藏