《雙曲線的簡單幾何性質(zhì)》教學(xué)設(shè)計
《《雙曲線的簡單幾何性質(zhì)》教學(xué)設(shè)計》由會員分享,可在線閱讀,更多相關(guān)《《雙曲線的簡單幾何性質(zhì)》教學(xué)設(shè)計(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 《雙曲線的簡單幾何性質(zhì)》教學(xué)設(shè)計 富源縣第一中學(xué) 李耀明 一、教材分析 1. 教材中的地位及作用 本節(jié)課是學(xué)生在已掌握雙曲線的定義及標準方程之后,在此基礎(chǔ)上,反過來 利用雙曲線的標準方程研究其幾何性質(zhì)。它是教學(xué)大綱要求學(xué)生必須掌握的內(nèi)容,也是高考的一個考點,是深入研究雙曲線,靈活運用雙曲線的定義、方程、性質(zhì)解題的基礎(chǔ),更能使學(xué)生理解、體會解析幾何這門學(xué)科的研究方法,培養(yǎng)學(xué)生的解析幾何觀念,提高學(xué)生的數(shù)學(xué)素質(zhì)。 2.教學(xué)目標的確定及依據(jù) 平面解析幾何研究的主要問題之一就是:通過方程,研究平面曲線的性
2、質(zhì)。教學(xué)參考書中明確要求:學(xué)生要掌握圓錐曲線的性質(zhì),初步掌握根據(jù)曲線的方程,研究曲線的幾何性質(zhì)的方法和步驟。根據(jù)這些教學(xué)原則和要求,以及學(xué)生的學(xué)習(xí)現(xiàn)狀,我制定了本節(jié)課的教學(xué)目標。 (1)知識目標: ①使學(xué)生能運用雙曲線的標準方程討論雙曲線的范圍、對稱性、 頂點、離心率、漸近線等幾何性質(zhì); ② 掌握雙曲線標準方程中 a, b, c 的幾何意義,理解雙曲線的漸近 線的概念及證明; ③能運用雙曲線的幾何性質(zhì)解決雙曲線的一些基本問題。 (2)能力目標: ①在與橢圓的性質(zhì)的類比中獲得雙曲線的性質(zhì),培養(yǎng)學(xué)生的觀察 能力,想象能力,數(shù)形結(jié)
3、合能力,分析、歸納能力和邏輯推 理能力,以及類比的學(xué)習(xí)方法; ②使學(xué)生進一步掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標系中曲線與方程的概念的理解。 (3)德育目標:培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度和探索精神, 而且能夠運用運動的,變化的觀點分析理解事物。 3. 重點、難點的確定及依據(jù) 對圓錐曲線來說,漸近線是雙曲線特有的性質(zhì),而學(xué)生對漸近線的發(fā)現(xiàn)與證 明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中我把漸近線的發(fā)現(xiàn)作為重點,充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,巧妙地應(yīng)用極限思想導(dǎo)出了
4、雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲透于其中,學(xué)生也易接受。因此,我把漸近線的證明作為本節(jié)課的難點,根據(jù)本節(jié)的教學(xué)內(nèi)容和教學(xué)大綱以及高考的要求,結(jié)合學(xué)生現(xiàn)有的實際水平和認知能力,我把漸近線和離心率這兩個性質(zhì)作為本節(jié)課的重點。 4. 教學(xué)方法 這節(jié)課內(nèi)容是通過雙曲線方程推導(dǎo)、 研究雙曲線的性質(zhì), 本節(jié)內(nèi)容類似于 “橢圓的簡單的幾何性質(zhì)” ,教學(xué)中可以與其類比講解,讓學(xué)生自己進行探究,得到類似的結(jié)論。在教學(xué)中,學(xué)生自己能得到的結(jié)論應(yīng)該讓學(xué)生自己得到,凡是難度不 大,經(jīng)過學(xué)習(xí)學(xué)生自己能解決的問題,應(yīng)該讓學(xué)生自己解決,這樣有利于調(diào)動學(xué)生學(xué)習(xí)的積極性,激發(fā)他們的學(xué)習(xí)
5、積極性,同時也有利于學(xué)習(xí)建立信心,使他們的主動性得到充分發(fā)揮,從中提高學(xué)生的思維能力和解決問題的能力。 漸近線是雙曲線特有的性質(zhì),我們常利用它作出雙曲線的草圖,而學(xué)生對漸近線的發(fā)現(xiàn)與證明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中著重培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,從已有知識出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動學(xué)生自身探索的內(nèi)驅(qū)力,進一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。 例題的選備,可將此題作一題多變(變條件,變結(jié)論) ,訓(xùn)練學(xué)生一題多解, 開拓其解題思路,使他們在做題中總結(jié)規(guī)律、發(fā)展思維、提高知識的應(yīng)用能力和發(fā)現(xiàn)問題、解
6、決問題能力。 二、教學(xué)程序 (一) . 設(shè)計思路 復(fù)習(xí)橢圓的幾何性質(zhì) 類比 雙曲線的幾何性質(zhì) 特有的幾何性質(zhì)(從特殊到一般的規(guī)律探索) 雙曲線的漸近線的發(fā)現(xiàn)及證明 加強應(yīng)用 深化知識、鞏固提高 (二) . 教學(xué)流程 1. 復(fù)習(xí)引入 我們已經(jīng)學(xué)習(xí)過橢圓的標準方程和雙曲線的標準方程,以及橢圓的簡單的幾 何性質(zhì),請同學(xué)們來回顧這些知識點,對學(xué)習(xí)的舊知識加以復(fù)習(xí)鞏固,同時為新知識的學(xué)習(xí)做準備,利用多媒體工具的先進性,結(jié)合圖像來演示。 2.觀察、類比 這節(jié)課內(nèi)容是通過雙曲
7、線方程推導(dǎo)、 研究雙曲線的性質(zhì), 本節(jié)內(nèi)容類似于 “橢圓的簡單的幾何性質(zhì)” ,教學(xué)中可以與其類比講解,讓學(xué)生自己進行探究,首先觀察雙曲線的形狀,試著按照橢圓的幾何性質(zhì),歸納總結(jié)出雙曲線的幾何性質(zhì)。一 般學(xué)生能用類似于推導(dǎo)橢圓的幾何性質(zhì)的方法得出雙曲線的范圍、對稱性、頂點、離心率,對知識的理解不能浮于表面只會看圖,也要會從方程的角度來解釋,抓住方程的本質(zhì)。用多媒體演示,加強學(xué)生對雙曲線的簡單幾何性質(zhì)范圍、對稱性、頂點(實軸、虛軸)、離心率(不深入的講解)的鞏固。之后,比較雙曲線的這四個性質(zhì)和橢圓的性質(zhì)有何聯(lián)系及區(qū)別,這樣可以加強新舊知識的聯(lián)系,借助于類 比方法,引
8、起學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲。 3. 雙曲線的漸近線的發(fā)現(xiàn)、證明(1)發(fā)現(xiàn) 由橢圓的幾何性質(zhì),我們能較準確地畫出橢圓的圖形。那么,由雙曲線的幾 何性質(zhì),能否較準確地畫出雙曲線 x2 y 2 1 的圖形為引例,讓學(xué)生動筆實踐,通 過列表描點,就能把雙曲線的頂點及附近的點較準確地畫出來,但雙曲線向遠處 如何伸展就不是很清楚。從而說明想要準確的畫出雙曲線的圖形只有那四個性質(zhì) 是不行的。 從學(xué)生曾經(jīng)學(xué)習(xí)過的反比例函數(shù)入手,而且可以比較精確的畫出反比例函數(shù) y 1 的圖像,它的圖像是雙曲線,當(dāng)雙曲線伸向遠處時,它與
9、 x、y 軸無限接近, x 1 的漸近線,為后面引出漸近線的概念埋下伏筆。從而讓學(xué)生 此時 x、y 軸是 y x 猜想雙曲線 x2 y 2 1 有何特征?有沒有漸近線?由于雙曲線的對稱性, 我們只須研究它的圖形在 第一象限 的情況即可。在研究雙曲線的范圍時,由雙曲線的標準 方程 x2 y 2 1 ,可解出 y 2 x2 1 , y x2 1 ,當(dāng) x 無限增大時, y 也隨之增 大 , 不 容 易 發(fā) 現(xiàn) 它 們 之 間 的 微 妙 關(guān) 系 。 但 是 如 果 將 式 子 變 形 為 y x2 2 1 1 12
10、 ,我們就會發(fā)現(xiàn):當(dāng) x 無限增大, 12 逐漸減小、無限接近 x x x x 于 0,而 y 就逐漸增大、無限接近于 1( y 1) ;若將 y 變形為 y 0 ,即說明此時 x x x x 0 雙曲線在第一象限,當(dāng) x 無限增大時,其上的點與坐標原點之間連線的斜率比 1 小,但與斜率為 1 的直線無限接近,且此點永遠在直線 y x 的下方。其它象限向 遠處無限伸展的變化趨勢就可以利用對稱性得到, 從而可知雙曲線 x2 y 2 1 的圖 形在遠處與直線 y x
11、 無限接近,此時我們就稱直線 y x 叫做雙曲線 x 2 y 2 1 的漸近線。這樣從已有知識出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動 學(xué)生自身探索的內(nèi)驅(qū)力,進一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。 利用由特殊到一般的規(guī)律, 就可以引導(dǎo)學(xué)生探尋雙曲線 x 2 y 2 1(a>0,b>0) a 2 b2 的 漸 近 線 , 讓 學(xué) 生 同 樣 利 用 類 比 的 方 法 , 將 其 變 形 為 y 2 x 2 1 ,
12、 b2 a 2 y 2 b2 ( x 2 a 2 ) ,由于雙曲線的對稱性,我們可以只研究第一象限向遠處的變化 a 2 b 2 2 y b a2 a 2 趨勢,繼續(xù)變形為 y a x a , x a 1 x2 ,可發(fā)現(xiàn)當(dāng) x 無限增大時, x 2 逐 漸減小、無限接近于 0, y 逐漸增大、無限接近于 b ,即說明對于雙曲線在第一象 x a 限遠處的點與坐標原點之間連線的斜
13、率比 b 小,與斜率為 b 的直線無限接近,且 a a 此點永遠在直線 y b x 下方。其它象限向遠處無限伸展的變化趨勢可以利用對 a 稱性得到,從而可知雙曲線 x2 y 2 1 (a>0,b>0)的圖形在遠處與直線 y b x 無 a2 b2 a 限接近,直線 y b x 叫做雙曲線 x2 y 2 1(a>0,b>0)的漸近線。我就是這樣將 a a2 b 2
14、 漸近線的發(fā)現(xiàn)作為重點,充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、 分析,巧妙地應(yīng)用極限思想導(dǎo)出了雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲 透于其中,學(xué)生也易接受。 (2)證明 如何證明直線 y b x 是雙曲線 x 2 y2 1(a>0, b>0)的漸近線呢? a a 2 b2 啟發(fā)思考①:首先,逐步接近,轉(zhuǎn)換成什么樣的數(shù)學(xué)語言?( x→∞,d→ 0) 啟發(fā)思考②:顯然有四處逐步接近,是否每一處都進行證明? 啟發(fā)思考③:鎖定第一象限后,具體地怎
15、樣利用 x 表示 d (工具是什么:點到直線的距離公式) 啟發(fā)思考④:讓學(xué)生設(shè)點,而 d 的表達式較復(fù)雜,能否將問題進行轉(zhuǎn)化? 分析:要證明直線 y b x 是雙曲線 x2 y 2 1(a>0,b>0)的漸近線,即要證 a a2 b2 明隨著 x 的增大,直線和曲線越來越靠攏。也即要證曲線上的點到直線的距離 |MQ|越來越短,因此把問題轉(zhuǎn)化為計算| MQ|。但因| MQ|不好直接求得,因 此又可以把問題轉(zhuǎn)化為求| MN|。 | MQ | | MN | b x b x2
16、a 2 y N a a B2 Q = b ( x ab M x 2 a 2 ) a 2 A2x a x x2 A1 O B1 ( | MQ | x 0 ) 啟發(fā)思考⑤:這樣證明后,還須交代什么? (在其他象限,同理可證,或由對稱性可知有相似情況) 引導(dǎo)學(xué)生層層深入的進行探究,從而更深刻的理解雙曲線的漸近線的發(fā)現(xiàn)及證明過程。 (
17、3)深化 再來研究實軸在 y 軸上的雙曲線 y 2 x 2 1(a>0,b>0)的漸近線方程就會變得 a 2 b2 容易很多,此時可利用類比的方法或者利用對稱性得到焦點在 y 軸上的雙曲線的 漸近線方程即為 y a x 。 b 這樣,我們就完滿地解決了畫雙曲線遠處趨向問題,從而可比較精確的畫出 雙曲線。但是如果仔細觀察漸近線實質(zhì)就是雙曲線過實軸端點、虛軸端點,作平 行與坐標軸的直線 x a, y b 所成的矩形的兩條對角線,數(shù)形結(jié)合,來加強對 雙曲線的漸近線的理解。
18、 4. 離心率的幾何意義 橢圓的離心率反映橢圓的扁平程度,雙曲線離心率有何幾何意義呢?不難得 到: e c ,c a, e 1,這是剛剛學(xué)生在類比橢圓的幾何性質(zhì)時就可以得到的 a 簡單結(jié)論。通過對離心率的研究,同樣也可以使學(xué)生進一步加深對漸近線的理解。 由等式 c2 a 2 b 2 ,可得: b c2 a 2 c2 1e2 1 ,不難發(fā)現(xiàn): e a a a 2 越?。ㄔ浇咏? 1), b 就越接近于 0,雙曲線開口越?。?e 越大, b 就越大,雙曲 a
19、 a 線開口越大。所以,雙曲線的離心率反映的是雙曲線的開口大小。通過對這些性質(zhì)的探究,就可以更好的理解雙曲線圖形與這些基本量之間的關(guān)系,更加準確的作出雙曲線的圖形。 5. 例題分析 為突出本節(jié)內(nèi)容,使學(xué)生盡快掌握剛才所學(xué)的知識。我選配了這樣的例題: 例 1. 求雙曲線 9x2-16y2=144 的實半軸長和虛半軸長、頂點和焦點坐標、漸近線方程、離心率。 選題目的 在于拿到一個雙曲線的方程之后若不是標準式,要先將所給的雙曲線方程化為標準方程,后根據(jù)標準方程分別求出有關(guān)量。本題求漸近線的方程的方法:(1)直接根據(jù)漸近線方程寫出; ( 2)利用雙曲線的圖形中的矩形
20、框架的對角線得到。加強對于雙曲線的漸近線的應(yīng)用和理解。 變 1:求雙曲線 9y2- 16x2=144 的實半軸長和虛半軸長、頂點和焦點坐標、漸近線方程、離心率。 選題目的 :和上題相同先將所給的雙曲線方程化為標準方程,后根據(jù)標準方程分別求出有關(guān)量;但求漸近線時可直接求出,也可以利用對稱性 來求解。 關(guān)鍵在于對比:雙曲線的形狀不變,但在坐標系中的位置改變,它的那些性質(zhì)改變,那些性質(zhì)不變?試歸納 雙曲線的幾何性質(zhì) 。(小結(jié)列表) 變 2:已知雙曲線的漸近線方程是 y 4 x
21、 ,且經(jīng)過點 ( 15 ,3), 求雙曲線的標 3 4 準方程。 選題目的 :在已知雙曲線的漸近線的前提下,如何利用已知信息求解雙 曲線的方程。方法 1:分焦點在 x 軸,焦點在 y 軸分別求解;方法 2:確定點所在的區(qū)域,定方程的形式,然后求 a、b。深化知識,加強應(yīng)用,使知識系統(tǒng)化。 例題的選備,可將此題作一題多變(變條件,變結(jié)論) ,訓(xùn)練學(xué)生一題多解,開拓其解題思路,使他們在做題中總結(jié)規(guī)律、發(fā)展思維、提高知識的應(yīng)用能力和發(fā)現(xiàn)問題、解決問題能力。 6. 課堂練習(xí) 課本 P113 練習(xí) 1.2 ,讓學(xué)生自己練習(xí),熟悉并運用雙曲線的幾何性質(zhì)解題,加強應(yīng)用性。 7. 課堂小結(jié) ( 1)通過本節(jié)學(xué)習(xí),要求學(xué)生熟悉并掌握雙曲線的幾何性質(zhì),尤其是雙曲線的漸近線方程及其“漸近”性質(zhì)的證明,并能簡單應(yīng)用雙曲線的幾何性質(zhì); ( 2)雙曲線的幾何性質(zhì)總結(jié) ( 學(xué)生填表歸納 ) 。 8. 課后作業(yè) 課本 P113習(xí)題 1.2.3 ,鞏固并掌握課上所學(xué)的知識。 思考:雙曲線與其漸近線的方程之間有何內(nèi)在的變化規(guī)律?
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 624E竣工驗收備案表內(nèi)頁四.xls
- 624D竣工驗收備案表內(nèi)頁三.xls
- 624C竣工驗收備案表內(nèi)頁二.xls
- 624B竣工驗收備案表內(nèi)頁一.xls
- 624A竣工驗收備案表封面.xls
- 623C建設(shè)工程竣工驗收報告內(nèi)頁2.xls
- 623B建設(shè)工程竣工驗收報告內(nèi)頁1.xls
- 623A建設(shè)工程竣工驗收報告封面.xls
- 622B質(zhì)量保修書內(nèi)頁.xls
- 622A質(zhì)量保修書封面.xls
- 621B工程質(zhì)量驗收計劃書內(nèi)頁1.xls
- 621A工程質(zhì)量驗收計劃書封面.xls
- 620C設(shè)計文件質(zhì)量檢查報告內(nèi)頁2.xls
- 620B設(shè)計文件質(zhì)量檢查報告內(nèi)頁1.xls
- 620A設(shè)計文件質(zhì)量檢查報告封面.xls