111 命題邏輯

上傳人:hjk****65 文檔編號:253194143 上傳時間:2024-11-30 格式:PPT 頁數(shù):41 大?。?94.39KB
收藏 版權(quán)申訴 舉報 下載
111 命題邏輯_第1頁
第1頁 / 共41頁
111 命題邏輯_第2頁
第2頁 / 共41頁
111 命題邏輯_第3頁
第3頁 / 共41頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《111 命題邏輯》由會員分享,可在線閱讀,更多相關(guān)《111 命題邏輯(41頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、,單擊此處編輯母版標題樣式,單擊此處編輯母版文本樣式,2/22/2009 8:44 PM,Deren Chen,ZheJiang Univ.,#,Logic,命題邏輯,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,1,基礎(chǔ)部分,:,邏輯,(Logic),集合,(Sets),算法,(Algorithms),數(shù)論,(Number Theory),11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,2,1.1.1,命題邏輯,Proposition Logic,11/30/2024 3:40 PM,Deren Chen,

2、ZheJiang Univ.,3,邏輯學:,研究推理的一門學科,數(shù)理邏輯:,用數(shù)學方法研究推理的一門數(shù)學學科,-,一套符號體系,+,一組規(guī)則,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,4,數(shù)理邏輯的內(nèi)容:,古典數(shù)理邏輯:,命題邏輯、謂詞邏輯,現(xiàn)代數(shù)理邏輯:,公理化集合論、遞歸論、模型論、證明論,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,5,Proposition:,一個有確定真或假意義的語句,.,命題邏輯,Proposition Logic,11/30/2024 3:40 PM,Deren Chen

3、,ZheJiang Univ.,6,EXAMPLE,1,All the following statements are propositions.,1.Washington,D.C.,is the capital of the United States of America.,2.Toronto is the capital of Canada.,3.1+1=2.,4.2+2=3.,Propositions 1 and 3 are true,whereas 2 and 4 are false.,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,7,E

4、XAMPLE 2,Consider the following sentences.,1.What time is it?,2.Read this carefully.,3.x+1=2.,4.x+y=z.,Sentences 1 and 2 are not propositions because they are not statements.Sentences 3 and 4 are not propositions because they are neither tree nor false,since the variables in these sentences have not

5、 been assigned values.Various ways to form propositions from sentences of this type will be discussed in Section 1.3.,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,8,命題的語句形式,陳述句,非命題語句:,疑問句,命令句,感態(tài)句,非命題陳述句:悖論語句,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,9,命題的符號表示:,大小寫英文字母:,P,、,Q,、,R,、,p,、,q,、,r,、。,命題

6、真值(,Truth Values,)的表示:,真:,T,、,1,假:,F,、,0,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,10,命題語句真值確定的幾點說明:,1,、時間性,2,、區(qū)域性,3,、標準性,命題真值間的關(guān)系表示:,真值表(,Truth Table),11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,11,DEFINITION 1.,Let p be a proposition.The statement,It is not the case that p.,is another proposit

7、ion,called the negation of p.,The negation of p is denoted by p.The proposition p is read not p.,p,的否定,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,12,EXAMPLE 3,Find the negation of the proposition,Today is Friday,and express this in simple English.,The negation is,It is not the case that today is F

8、riday.,This negation can be more simply expressed by,Today is not Friday.,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,13,Table 1,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,14,DEFINITION 2.,Let p and q be propositions.The proposition p and q,denoted by pq,is the proposition that is true when both

9、p and q are true and is false otherwise.The proposition pq is called the conjunction of p and q.,The truth table for pq is shown in Table 2.,p,和,q,的合取,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,15,Table 2,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,16,EXAMPLE 4,Find the conjunction of the proposi

10、tions p and q where p is the proposition Today is Friday and q is the proposition It is raining today.,Solution:,The conjunction of these propositions,pq,is the proposition Today is Friday and it is raining today.This proposition is true on rainy Fridays and is false on any day that is not a Friday

11、and on Fridays when it does not rain.,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,17,DEFINITION 3.,Let p and q be propositions.The proposition p or q,denoted by pq,is the proposition that is false when p and q are both false and true otherwise.The proposition pq is called the disjunction of p and q

12、.,The truth table for pq is shown in Table 3.,p,和,q,的析取,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,18,Table 3,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,19,EXAMPLE 5,What is the disjunction of the propositions p and q where p and q are the same propositions as in Example 4?,Solution:,The disjunc

13、tion ofp and q,pq,is the proposition,Today is Friday or it is raining today.,This proposition is true on any day that is either a Friday or a rainy day(including rainy Fridays).It is only false on days that are not Fridays when it also does not rain.,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,20,D

14、EFINITION 4.,Let p and q be propositions.The exclusive or of p and q,denoted by p q,is the proposition that is true when exactly one of p and q is true and is false otherwise.,The truth table for the exclusive or of two propositions is displayed in Table 4.,p,和,q,的對稱差,11/30/2024 3:40 PM,Deren Chen,Z

15、heJiang Univ.,21,Table 4,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,22,DEFINITION 5.,Let p and q be propositions.The implication pq is the proposition that is false when p is true and q is false and true otherwise.In this implication p is called the hypothesis(or antecedent or premise)and q is cal

16、led the conclusion(or consequence).,如果,p,則,q,單條件,蘊涵,P:,前提,Q:,結(jié)論,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,23,Table 5,11/30/2024 3:40 PM,Deren Chen,ZheJiang Univ.,24,EXAMPLE 6,What is the value of the variable x after the statement,if 2+2=4 then x:=x+1,if x=0 before this statement is encountered?(The symbol:=stands for assignment.The statement x:=x+1 means the assignment of the value of x+1 to x.),Solution:,Since 2+2=4 is true,the assignment statement x:=x+1 is executed.Hence,x has the value 0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!