《§3.4基本不等式》由會(huì)員分享,可在線閱讀,更多相關(guān)《§3.4基本不等式(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
課題: 3.4基本不等式
第1課時(shí)
授課類型:新授課
【教學(xué)目標(biāo)】
1.知識(shí)與技能:學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;
2.過程與方法:通過實(shí)例探究抽象基本不等式;
3.情態(tài)與價(jià)值:通過本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣
【教學(xué)重點(diǎn)】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式的證明過程;
【教學(xué)難點(diǎn)】
基本不等式等號(hào)成立條件
【教學(xué)過程】
1.課題導(dǎo)入
基本不等式的幾何背景:
如圖是在北京召開的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是
2、根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。你能在這個(gè)圖案中找出一些相等關(guān)系或不等關(guān)系嗎?
教師引導(dǎo)學(xué)生從面積的關(guān)系去找相等關(guān)系或不等關(guān)系。
2.講授新課
1.探究圖形中的不等關(guān)系
將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長(zhǎng)為a,b那么正方形的邊長(zhǎng)為。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式:。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),正方形EFGH縮為一個(gè)點(diǎn),這時(shí)有。
2.得到結(jié)論:一般的,如果
3
3、.思考證明:你能給出它的證明嗎?
證明:因?yàn)?
當(dāng)
所以,,即
4.1)從幾何圖形的面積關(guān)系認(rèn)識(shí)基本不等式
特別的,如果a>0,b>0,我們用分別代替a、b ,可得,
通常我們把上式寫作:
2)從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:
要證 (1)
只要證 a+b (2)
要證(2),只要證 a+b-
4、0 (3)
要證(3),只要證 ( - ) (4)
顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時(shí),(4)中的等號(hào)成立。
3)理解基本不等式的幾何意義
探究:課本第110頁的“探究”
在右圖中,AB是圓的直徑,點(diǎn)C是AB上的一點(diǎn),AC=a,BC=b。過點(diǎn)C作垂直于AB的弦DE,連接AD、BD。你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?
易證Rt△ACD∽Rt△DCB,那么CD2=CACB
即CD=.
這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與
5、圓心重合,即a=b時(shí),等號(hào)成立.
因此:基本不等式幾何意義是“半徑不小于半弦”
評(píng)述:1.如果把看作是正數(shù)a、b的等差中項(xiàng),看作是正數(shù)a、b的等比中項(xiàng),那么該定理可以敘述為:兩個(gè)正數(shù)的等差中項(xiàng)不小于它們的等比中項(xiàng).
2.在數(shù)學(xué)中,我們稱為a、b的算術(shù)平均數(shù),稱為a、b的幾何平均數(shù).本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).
[補(bǔ)充例題]
例1 已知x、y都是正數(shù),求證:
(1)≥2;
(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.
分析:在運(yùn)用定理:時(shí),注意條件a、b均為正數(shù),結(jié)合不等式的性質(zhì)(把握好每條性質(zhì)成立的條件),進(jìn)行變形.
解:∵
6、x,y都是正數(shù) ∴>0,>0,x2>0,y2>0,x3>0,y3>0
(1)=2即≥2.
(2)x+y≥2>0 x2+y2≥2>0 x3+y3≥2>0
∴(x+y)(x2+y2)(x3+y3)≥222=8x3y3
即(x+y)(x2+y2)(x3+y3)≥8x3y3.
3.隨堂練習(xí)
1.已知a、b、c都是正數(shù),求證
(a+b)(b+c)(c+a)≥8abc
分析:對(duì)于此類題目,選擇定理:(a>0,b>0)靈活變形,可求得結(jié)果.
解:∵a,b,c都是正數(shù)
∴a+b≥2>0
b+c≥2>0
c+a≥2>0
∴(a+b)(
7、b+c)(c+a)≥222=8abc
即(a+b)(b+c)(c+a)≥8abc.
4.課時(shí)小結(jié)
本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)(),幾何平均數(shù)()及它們的關(guān)系(≥).它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù).它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將學(xué)習(xí)它們的應(yīng)用).我們還可以用它們下面的等價(jià)變形來解決問題:ab≤,ab≤()2.
5.評(píng)價(jià)設(shè)計(jì)
課本第113頁習(xí)題[A]組的第1題
【板書設(shè)計(jì)】
010-58818067 58818068 canpoint@
第 4 頁 共 4 頁