光電傳感器英文和譯文
《光電傳感器英文和譯文》由會(huì)員分享,可在線閱讀,更多相關(guān)《光電傳感器英文和譯文(13頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、Progress in Materials ScienceVolume 46, Issues 34, 2001, Pages 461504The selection of sensorsJ Shieh, J.E Huber, N.A Fleck , , M.F AshbyDepartment of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UKAvailable online 14 March 2001.http:/dx.doi.org/10.1016/S0079-6425(00)0001
2、1-6, How to Cite or Link Using DOIPermissions & ReprintsAbstractA systematic method is developed to select the most appropriate sensor for a particular application. A wide range of candidate sensors exist, and many are based on coupled electrical and mechanical phenomena, such as the piezoelectric,
3、magnetostrictive and the pyro-electric effects. Performance charts for sensors are constructed from suppliers data for commercially available devices. The selection of an appropriate sensor is based on matching the operating characteristics of sensors to the requirements of an application. The final
4、 selection is aided by additional considerations such as cost, and impedance matching. Case studies illustrate the selection procedure.KeywordsSensors; Selection; Sensing range; Sensing resolution; Sensing frequency1. IntroductionThe Oxford English Dictionary defines a sensor as “a device which dete
5、cts or measures some condition or property, and records, indicates, or otherwise responds to the information received”. Thus, sensors have the function of converting a stimulus into a measured signal. The stimulus can be mechanical, thermal, electromagnetic, acoustic, or chemical in origin (and so o
6、n), while the measured signal is typically electrical in nature, although pneumatic, hydraulic and optical signals may be employed. Sensors are an essential component in the operation of engineering devices, and are based upon a very wide range of underlying physical principles of operation.Given th
7、e large number of sensors on the market, the selection of a suitable sensor for a new application is a daunting task for the Design Engineer: the purpose of this article is to provide a straightforward selection procedure. The study extends that of Huber et al. 1 for the complementary problem of act
8、uator selection. It will become apparent that a much wider choice of sensor than actuator is available: the underlying reason appears to be that power-matching is required for an efficient actuator, whereas for sensors the achievable high stability and gain of modern-day electronics obviates a need
9、to convert efficiently the power of a stimulus into the power of an electrical signal. The classes of sensor studied here are detailed in the Appendices.2. Sensor performance chartsIn this section, sensor performance data are presented in the form of 2D charts with performance indices of the sensor
10、as axes. The data are based on sensing systems which are currently available on the market. Therefore, the limits shown on each chart are practical limits for readily available systems, rather than theoretical performance limits for each technology. Issues such as cost, practicality (such as impedan
11、ce matching) and reliability also need to be considered when making a final selection from a list of candidate sensors.Before displaying the charts we need to introduce some definitions of sensor characteristics; these are summarised in Table 1.1 Most of these characteristics are quoted in manufactu
12、rers data sheets. However, information on the reliability and robustness of a sensor are rarely given in a quantitative manner.Table 1. Summary of the main sensor characteristicsRange maximum minus minimum value of the measured stimulusResolution smallest measurable increment in measured stimulusSen
13、sing frequency maximum frequency of the stimulus which can be detectedAccuracy error of measurement, in% full scale deflectionSize leading dimension or mass of sensorOpt environment operating temperature and environmental conditionsReliability service life in hours or number of cycles of operationDr
14、ift long term stability (deviation of measurement over a time period)Cost purchase cost of the sensor ($ in year 2000)Full-size tableIn the following, we shall present selection charts using a sub-set of sensor characteristics: range, resolution and frequency limits. Further, we shall limit our atte
15、ntion to sensors which can detect displacement, acceleration, force, and temperature.2 Each performance chart maps the domain of existence of practical sensors. By adding to the chart the required characteristics for a particular application, a subset of potential sensors can be identified. The opti
16、mal sensor is obtained by making use of several charts and by considering additional tabular information such as cost. The utility of the approach is demonstrated in Section 3, by a series of case studies.2.1. Displacement sensorsConsider first the performance charts for displacement sensors, with a
17、xes of resolution versus range R, and sensing frequency f versus range R, as shown in Fig. 1 and Fig. 2, respectively.Fig. 1. Resolution versus sensing range for displacement sensors.View thumbnail imagesFig. 2. Sensing frequency versus sensing range for displacement sensors.View thumbnail images2.1
18、.1. Resolution sensing range chart (Fig. 1)The performance regime of resolution versus range R for each class of sensor is marked by a closed domain with boundaries given by heavy lines (see Fig. 1). The upper limit of operation is met when the coarsest achievable resolution equals the operating ran
19、ge =R. Sensors of largest sensing range lie towards the right of the figure, while sensors of finest resolution lie towards the bottom. It is striking that the range of displacement sensor spans 13 orders of magnitude in both range and resolution, with a large number of competing technologies availa
20、ble. On these logarithmic axes, lines of slope +1 link classes of sensors with the same number of distinct measurable positions, . Sensors close to the single position line =R are suitable as simple proximity (on/off) switches, or where few discrete positions are required. Proximity sensors are mark
21、ed by a single thick band in Fig. 1: more detailed information on the sensing range and maximum switching frequency of proximity switches are summarised in Table 2. Sensors located towards the lower right of Fig. 1 allow for continuous displacement measurement, with high information content. Displac
22、ement sensors other than the proximity switches are able to provide a continuous output response that is proportional to the targets position within the sensing range. Fig. 1 shows that the majority of sensors have a resolving power of 103106 positions; this corresponds to approximately 1020 bits fo
23、r sensors with a digital output.Table 2. Specification of proximity switchesProximity switch type Maximum switching distance (m) Maximum switching frequency (Hz)Inductive 61041101 55000Capacitive 11036102 1200Magnetic 31038.5102 4005000Pneumatic cylinder sensors (magnetic)Piston diameter 81033.2101
24、3005000Ultrasonic 1.21015.2 150Photoelectric 3103300 2020,000Full-size tableIt is clear from Fig. 1 that the sensing range of displacement sensors cluster in the region 105101 m. To the left of this cluster, the displacement sensors of AFM and STM, which operate on the principles of atomic forces an
25、d current tunnelling, have z-axis-sensing ranges on the order of microns or less. For sensing tasks of 10 m or above, sensors based on the non-contacting technologies of linear encoding, ultrasonics and photoelectrics become viable. Optical linear encoders adopting interferometric techniques can ach
26、ieve a much higher resolution than conventional encoders; however, their sensing range is limited by the lithographed carrier (scale). A switch in technology accounts for the jump in resolution of optical linear encoders around the sensing range of 0.7 m in Fig. 1.Note that “radar”, which is capable
27、 of locating objects at distances of several thousand kilometres,3 is not included in Fig. 1. Radar systems operate by transmitting high-frequency radio waves and utilise the echo and Doppler shift principles to determine the position and speed of the target. Generally speaking, as the required sens
28、ing range increases, sensors based on non-contact techniques become the most practicable choice due to their flexibility, fast sensing speed and small physical size in relation to the length scale detected. Fig. 1 shows that sensors based on optical techniques, such as fibre-optic, photoelectric and
29、 laser triangulation, cover the widest span in sensing range with reasonably high resolution.For displacement sensors, the sensing range is governed by factors such as technology limitation, probe (or sensing face) size and the material properties of the target. For example, the sensing distance of
30、ultrasonic sensors is inversely proportional to the operating frequency; therefore, a maximum sensing range cut-off exists at about R=50 m. Eddy current sensors of larger sensing face are able to produce longer, wider and stronger electromagnetic fields, which increase their sensing range. Resolutio
31、n is usually controlled by the speed, sensitivity and accuracy of the measuring circuits or feedback loops; noise level and thermal drift impose significant influences also. Sensors adopting more advanced materials and manufacturing processes can achieve higher resolution; for example, high-quality
32、resistive film potentiometers have a resolution of better than 1 m over a range of 1 m (i.e. 106 positions) whereas typical coil potentiometers achieve only 103 positions.2.1.2. Sensing frequency sensing range chart (Fig. 2)When a displacement sensor is used to monitor an oscillating body, a conside
33、ration of sensing frequency becomes relevant. Fig. 2 displays the upper limit of sensing frequency and the sensor range for each class of displacement sensor. It is assumed that the smallest possible sensing range of a displacement sensor equals its resolution; therefore in Fig. 2, the left-hand sid
34、e boundary of each sensor class corresponds to its finest resolution.4 However, sensors close to this boundary are only suitable as simple switches, or where few discrete positions are to be measured.Lines of slope 1 in Fig. 2 link classes of sensors with the same sensing speed, fR. For contact sens
35、ors such as the LVDT and linear potentiometer, the sensing speed is limited by the inertia of moving parts. In contrast, many non-contact sensors utilise mechanical or electromagnetic waves and operate by adopting the time-of-flight approach; therefore, their maximum sensing speed is limited by the
36、associated wave speed. For example, the maximum sensing speed of magnetostrictive sensors is limited by the speed of a strain pulse travelling in the waveguide alloy, which is about 2.8103 m s1.The sensing frequency of displacement sensors is commonly dependent on the noise levels exhibited by the m
37、easuring electronic circuits. Additionally, some physical and mechanical limits can also impose constraints. For example, the dynamic response of a strain gauge is limited by the wave speed in the substrate. For sensors with moving mass (for example, linear encoder, LVDT and linear potentiometer), t
38、he effects of inertial loading must be considered in cyclic operation. For optical linear encoders the sensing frequency increases with range on the left-hand side of the performance chart, according to the following argument. The resolution becomes finer (i.e. decreases in an approximately linear m
39、anner) with a reduced scan speed V of the recording head. Since the sensor frequency f is proportional to the scan speed V, we deduce that f increases linearly with , and therefore f is linear in the minimum range of the device.2.2. Linear velocity sensorsAlthough velocity and acceleration are the f
40、irst and second derivatives of displacement with respect to time, velocity and acceleration measurements are not usually achieved by time differentiation of a displacement signal due to the presence of noise in the signal. The converse does not hold: some accelerometers, especially navigation-grade
41、servo accelerometers, have sufficiently high stability and low drift that it is possible to integrate their signals to obtain accurate velocity and displacement information.The most common types of velocity sensor of contacting type are electromagnetic, piezoelectric and cable extension-based. Elect
42、romagnetic velocity sensors use the principle of magnetic induction, with a permanent magnet and a fixed geometry coil, such that the induced (output) voltage is directly proportional to the magnets velocity relative to the coil. Piezo-velocity transducers (PVTs) are piezoelectric accelerometers wit
43、h an internal integration circuit which produces a velocity signal. Cable extension-based transducers use a multi-turn potentiometer (or an incremental/absolute encoder) and a tachometer to measure the rotary position and rotating speed of a drum that has a cable wound onto it. Since the drum radius
44、 is known, the velocity and displacement of the cable head can be determined.5Optical and microwave velocity sensors are non-contacting, and utilise the optical-grating or Doppler frequency shift principle to calculate the velocity of the moving target. Typical specifications for each class of linea
45、r velocity sensor are listed in Table 3.Table 3. Specification of linear velocity sensorsSensor class Maximum sensing range (m/s) Resolution (number of positions) Maximum operating frequency (Hz)Magnetic induction 25360 51045105 1001500PVT 0.251.3 11055105 7000Sensor class Maximum sensing range (m/s
46、) Resolution (number of positions) Maximum operating frequency (Hz)Cable-extension 0.715 11051106 1100Optical and microwave 13165 1105 10,000目錄1. 簡介 .22. 傳感器性能圖表 .22.1位移傳感器 .32.1.1分辨率 - 感應(yīng)范圍圖(圖 1) .42.1.2.檢測(cè)頻率 檢測(cè)范圍圖(圖 2) .52.2線性速度傳感器 .6問題 3-4,2001 年第 46 卷,頁 461-504 傳感器的選擇J Shieh, J.E Huber, N.A Flec
47、kM.F Ashby劍橋大學(xué)工程系,英國劍橋 CB2 的 1PZ,Trumpington 街_摘要對(duì)于一個(gè)特定的應(yīng)用系統(tǒng)來說要選擇最為合適的傳感器。大量種類的傳感器存在,并且許多傳感器是基于耦合的電氣和機(jī)械現(xiàn)象,如壓電,磁致伸縮和焦電效應(yīng)。傳感器的性能圖表是從商用設(shè)備供應(yīng)商提供的數(shù)據(jù)而來。選擇適當(dāng)?shù)膫鞲衅魇腔趥鞲衅鞯慕?jīng)營特色,以匹配應(yīng)用程序要求。最終的選擇是根據(jù)外加的其他因素,如成本,阻抗匹配。這些案例研究說明了選拔程序。關(guān)鍵詞傳感器選擇感應(yīng)范圍檢測(cè)分辨率檢測(cè)頻率_1. 簡介“牛津英語大辭典”定義傳感器“一個(gè)能夠檢測(cè)測(cè)量環(huán)境或一些變量,且能夠記錄,顯示,或以其他方式收到信息的設(shè)備”。因此,傳
48、感器具有將刺激轉(zhuǎn)換成可測(cè)量信號(hào)的功能。這些刺激可以是力學(xué),熱學(xué),電磁學(xué),聲學(xué),或起源于化學(xué)(等)的刺激,而測(cè)得的信號(hào)通一般是電信號(hào),雖然氣動(dòng),液壓和光信號(hào)也可以采用?;趶V泛而最基本物理原理的傳感器是工程設(shè)備中必不可少的組成部分??紤]到市場(chǎng)上種類繁多的傳感器,對(duì)于工程設(shè)計(jì)人員為一個(gè)新的應(yīng)用程序選擇合適的傳感器是一項(xiàng)艱巨的任務(wù):這篇文章的目的就是提供一套簡單的挑選步驟。本研究是對(duì)胡貝爾等對(duì)執(zhí)行機(jī)構(gòu)選擇問題的延伸和補(bǔ)充。傳感器比執(zhí)行機(jī)構(gòu)具有更為廣泛的應(yīng)用:根本原因,驅(qū)動(dòng)器需要有效的比配功率,而傳感器是實(shí)現(xiàn)現(xiàn)性電子產(chǎn)品所要求的的高穩(wěn)定性和增益性并能將其轉(zhuǎn)換成強(qiáng)有效的電信號(hào)地刺激。傳感器種類的研究將在
49、附錄中詳細(xì)的闡述。2. 傳感器性能圖表 在本節(jié)中,傳感器性能數(shù)據(jù)以性能為橫軸的二維圖中進(jìn)行展示。這些數(shù)據(jù)是基于當(dāng)前市場(chǎng)上一般可用的傳感系統(tǒng)的。而不是具有工藝?yán)碚撗芯康睦碚撝R(shí)。如成本,實(shí)用性(如阻抗匹配)和可靠性等問題也需要從備選傳感器性能列表中進(jìn)行對(duì)比,然后在做最后的選擇。在闡釋圖表之前,我們需要介紹一些有關(guān)傳感器特性的定義,在表 1.1 中給出的性能多是廠商會(huì)給出的。然而,傳感器的可靠性和魯棒性很少以確定的方式給出表 1.主要傳感器的特性總結(jié)范圍 刺激的最大值減最小值分辨率 可測(cè)量的最小的刺激變化值檢測(cè)頻率 可被檢測(cè)的刺激的最高頻率精度 測(cè)量誤差, 以滿課度百分比的形式給出尺寸 一般傳感器
50、的主要規(guī)格外界環(huán)境 溫度和環(huán)境條件可靠性 服務(wù)時(shí)長活著運(yùn)行周期漂移 長期穩(wěn)定性(一段時(shí)期內(nèi)的測(cè)量偏差)成本 采購成本 (2000 年以美元計(jì))全尺寸表在下面,我們將用二維的傳感器特性圖呈現(xiàn)選項(xiàng):范圍,分辨率和頻率的限制。此外,我們應(yīng)該限制我們的注意力集中于能夠測(cè)量距離,加速度,力,溫度的的傳感器。每個(gè)性能圖展示是的實(shí)際存在的應(yīng)用于各產(chǎn)業(yè)中的傳感器。通過在圖表中添加為特定應(yīng)用所需的敏感器特性,可以識(shí)分辨出傳感器的子集。要想選擇出最合適的傳感器是利用幾個(gè)圖表,并要考慮下面的表格信息如價(jià)格。該方法的實(shí)用性表現(xiàn)在2.1位移傳感器首先考慮位移傳感器的性能圖表,分辨率 與范圍 R 的關(guān)系,檢測(cè)頻率 f 與
51、范圍 R 的關(guān)系,如圖 1 和圖 2 分別所示。 圖 1。位移傳感器的分辨率與傳感范圍的對(duì)應(yīng)系。 圖 2。位移傳感器的檢測(cè)頻率與傳感范圍的對(duì)應(yīng)關(guān)系。2.1.1分辨率 - 感應(yīng)范圍圖(圖 1)對(duì)于這種傳感器的分辨率對(duì)感應(yīng)范圍 R 的性能結(jié)構(gòu)是用封閉的的加重的線標(biāo)記的(見圖一)。當(dāng)可感應(yīng)的分辨率等于感應(yīng)范圍即 = R 是,。令人吃驚的位移傳感器的范圍跨越 13 個(gè)數(shù)量級(jí),大量的競(jìng)爭(zhēng)技術(shù),在范圍和分辨率。在這些數(shù)軸,斜坡+1 傳感器具有獨(dú)特的可衡量的職位相同數(shù)量的鏈接類線。接近傳感器,以單一的立場(chǎng)是一致的是適合作為簡單的接近(開/關(guān))開關(guān),或需要幾個(gè)分立位置。接近傳感器是由一個(gè)單一的厚圖帶標(biāo)記。 1
52、:最大開關(guān)頻率接近開關(guān)感應(yīng)范圍和更詳細(xì)的信息匯總表 2。對(duì)位于圖右下角的傳感器。 1 允許連續(xù)位移測(cè)量,信息含量高。位移傳感器,接近開關(guān)以外,能夠提供連續(xù)的輸出響應(yīng)是成正比的感應(yīng)范圍內(nèi)目標(biāo)的位置。圖 1 可以看出,大多數(shù)傳感器有 103-106 位置的分辨能力,這對(duì)應(yīng)約 10-20 位數(shù)字輸出的傳感器。表 2。接近開關(guān)的規(guī)格接近開關(guān)類型 最大開關(guān)距離 (m) 最大開關(guān)頻率(Hz)感應(yīng)區(qū) 61041101 55000容量 11036102 1200磁性 31038.5102 4005000氣缸傳感器(磁)活塞直徑超聲波 81033.2101 3005000超聲波 1.21015.2 150光電
53、3103300 2020,000全尺寸表從圖 1 可以很明顯的看到位移傳感器的感應(yīng)范圍集中在 10-5-101 米的區(qū)域。這 個(gè)范圍左側(cè),AFM 和 STM 位移傳感器是靠原子力來運(yùn)行的,并且 Z 軸感應(yīng)范圍在微米級(jí)左右。對(duì)于測(cè)量 10 米或以上的傳感任務(wù),傳感器基于非接觸式的線性編碼的超聲波的光電技術(shù)。光學(xué)線性編碼器采用干涉測(cè)量技術(shù)可以比傳統(tǒng)的編碼器實(shí)現(xiàn)更高的分辨率,然而,其感應(yīng)范圍被刻載波(規(guī)模)限制。感應(yīng)范圍在 0.7 米左右時(shí)的光學(xué)線性編碼的跳躍是有開關(guān)導(dǎo)致的(如圖一)。注意,這是能夠在數(shù)千公里的距離定位對(duì)象的“雷達(dá)”并不包含在圖 1 中。雷達(dá)系統(tǒng)通過高頻無線電波傳輸和利用回波和多普勒
54、頻移的原則來確定目標(biāo)的位置和速度的。一般來說,隨著所需的感應(yīng)范圍增加,基于非接觸技術(shù)的傳感器成為最可行的選擇,由于其靈活性,檢測(cè)速度快和小尺度檢測(cè)的物理尺寸。圖1 所示,基于光學(xué)技術(shù),如光纖,光電,激光三角傳感器,以相當(dāng)高的分辨率覆蓋了在感應(yīng)范圍內(nèi)最廣泛跨度。對(duì)于位移傳感器而言感應(yīng)范圍被如技術(shù),探頭(或感應(yīng)面)的尺寸和材料性能而制約。例如,超聲波傳感器的檢測(cè)距離是與工作頻率成反比的,因此,最大感應(yīng)范圍存在 R = 50 米處。渦流傳感器的感應(yīng)面較大,能夠產(chǎn)生更長,更寬和更強(qiáng)大的電磁場(chǎng),從而增加其感應(yīng)范圍。分辨率通常被速度,靈敏度和精度的測(cè)量電路或反饋回路控制,噪音水平和熱漂移征收也有顯著影響。
55、傳感器采用更先進(jìn)的材料和制造工藝,可以實(shí)現(xiàn)更高的分辨率,例如,高品質(zhì)的電阻膜電位有超過 1 米(即 106 位置優(yōu)于 1 微米)范圍內(nèi)的分辨率,而典型的線圈電位只能達(dá)到 103 微米。2.1.2.檢測(cè)頻率 檢測(cè)范圍圖(圖 2)當(dāng)位移傳感器用來監(jiān)測(cè)震蕩物體時(shí),檢測(cè)頻率變得至關(guān)重要。圖 2 顯示了檢測(cè)頻率和每類位移傳感器傳感器范圍的上限。據(jù)推測(cè),位移傳感器 最小的檢測(cè)范圍等于分辨率,因此在圖 2 中,每類傳感器的左側(cè)邊界和分辨率是一致的。然而,只有簡單的開關(guān)器適合這個(gè)邊界處的性質(zhì),或者用于測(cè)量幾個(gè)有限的距離。圖 2 中的斜線 1,用相同的檢測(cè)速度聯(lián)系起不同類的傳感器,F(xiàn)R,如 LVDT 和線性電位
56、器的接觸式傳感器,感應(yīng)速度被運(yùn)動(dòng)部件的慣性所限制。與此相反,許多非接觸式傳感器利用機(jī)械或電磁波通過飛速的接收發(fā)送來完成,因此,其最大的感應(yīng)速度是由相關(guān)的波速度的限制。例如,傳感磁致伸縮傳感器的最大速度是被合金的應(yīng)變脈沖所限制的,其中約 2.8103 m 每秒行駛速度。位移傳感器的傳感頻率一般是通過測(cè)量電子電路發(fā)出的噪音水平來判定的。此外,一些物理和機(jī)械的限制,也可以施加限制。例如,應(yīng)變計(jì)的動(dòng)態(tài)響應(yīng)是被通過在基板上的波的速度限制的。對(duì)于移動(dòng)傳感器(例如,線性編碼器,LVDT和線性電位器),必須考慮慣性載荷的影響。對(duì)于線性光學(xué)編碼器檢測(cè)頻率的增加是隨著傳感性能圖表左側(cè)的范圍而增加的,根據(jù)下面的參數(shù)
57、。分辨率提高(即 近似線性地減小)是隨著記錄頭掃描速度 V 減少發(fā)生的。我們推斷,f的增加是與 成線性的,因此 f 在設(shè)備的最小范圍時(shí)呈線性。2.2線性速度傳感器雖然速度和加速度,是位移對(duì)時(shí)間的第一和第二變量,速度和加速度的測(cè)量通常不容易實(shí)現(xiàn)位移信號(hào)的測(cè)量,這是因?yàn)樾盘?hào)中存在噪聲分化。反過來不成立:加速度計(jì),尤其是導(dǎo)航級(jí)伺服加速度計(jì),有足夠高的穩(wěn)定性和低漂移,這可以集成信號(hào),以獲得準(zhǔn)確的速度和位移信息。接觸式速度傳感器的最常見的類型是電磁速度傳感器,它基于壓電和延長電纜。電磁速度傳感器使用永久磁鐵和一個(gè)固定的幾何線圈的磁感應(yīng)原理,這樣的反應(yīng)(輸出)電壓正比于線圈磁鐵的速度。壓電式速度傳感器(PVTs)是內(nèi)部集成電路環(huán)生產(chǎn)速度信號(hào)。延長電纜為基礎(chǔ)的傳感器使用多圈電位器(或增量/絕對(duì)式編碼器)和轉(zhuǎn)速計(jì)來測(cè)量電纜,旋轉(zhuǎn)位置和旋轉(zhuǎn)速度。由于滾筒的半徑是已知的,電纜頭的速度和位移可以確定光學(xué)和微波速度傳感器的非接觸式,并利用光纖光柵的多普勒頻移原理,計(jì)算出移動(dòng)目標(biāo)的速度。表 3 列出了每類線性速度傳感器的典型規(guī)格。傳感器類型 最大檢測(cè)范圍 (m/s) 分辨率 (位置數(shù)) 最大工作頻率 (Hz)磁感應(yīng) 25360 51045105 1001500PVT 0.251.3 11055105 7000電纜延伸 0.715 11051106 1100光學(xué)和微波式 13165 1105 10,000
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點(diǎn)美食推薦
- XX國有企業(yè)黨委書記個(gè)人述責(zé)述廉報(bào)告及2025年重點(diǎn)工作計(jì)劃
- 世界濕地日濕地的含義及價(jià)值
- 20XX年春節(jié)節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)人到場(chǎng)心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點(diǎn)節(jié)后常見的八大危險(xiǎn)
- 廈門城市旅游介紹廈門景點(diǎn)介紹廈門美食展示
- 節(jié)后開工第一課復(fù)工復(fù)產(chǎn)十注意節(jié)后復(fù)工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓(xùn)
- 深圳城市旅游介紹景點(diǎn)推薦美食探索
- 節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)勿忘安全本心人人講安全個(gè)個(gè)會(huì)應(yīng)急
- 預(yù)防性維修管理
- 常見閥門類型及特點(diǎn)
- 設(shè)備預(yù)防性維修
- 2.乳化液泵工理論考試試題含答案