高中數(shù)學(xué)第二章《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》教案新人教A版必修4

上傳人:精****料 文檔編號:29967938 上傳時間:2021-10-08 格式:DOC 頁數(shù):4 大小:296.93KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)第二章《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》教案新人教A版必修4_第1頁
第1頁 / 共4頁
高中數(shù)學(xué)第二章《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》教案新人教A版必修4_第2頁
第2頁 / 共4頁
高中數(shù)學(xué)第二章《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》教案新人教A版必修4_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

16 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)第二章《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》教案新人教A版必修4》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)第二章《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》教案新人教A版必修4(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 第9課時三、平面向量數(shù)量積的坐標(biāo)表示、模、夾角 教學(xué)目的: ⑴要求學(xué)生掌握平面向量數(shù)量積的坐標(biāo)表示 ⑵掌握向量垂直的坐標(biāo)表示的充要條件,及平面內(nèi)兩點(diǎn)間的距離公式. ⑶能用所學(xué)知識解決有關(guān)綜合問題. 教學(xué)重點(diǎn):平面向量數(shù)量積的坐標(biāo)表示 教學(xué)難點(diǎn):平面向量數(shù)量積的坐標(biāo)表示的綜合運(yùn)用 授課類型:新授課 教 具:多媒體、實(shí)物投影儀 教學(xué)過程: 一、復(fù)習(xí)引入: 1.兩個非零向量夾角的概念 已知非零向量a與b,作=a,=b,則∠AOB=θ(0≤θ≤π)叫a與b的夾角. C 2.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,則數(shù)量|a||b|co

2、sq叫a與b的數(shù)量積,記作ab,即有ab = |a||b|cosq, (0≤θ≤π).并規(guī)定0與任何向量的數(shù)量積為0. 3.向量的數(shù)量積的幾何意義: 數(shù)量積ab等于a的長度與b在a方向上投影|b|cosq的乘積. 4.兩個向量的數(shù)量積的性質(zhì): 設(shè)a、b為兩個非零向量,e是與b同向的單位向量. 1 ea = ae =|a|cosq; 2 a^b ab = 0 3 當(dāng)a與b同向時,ab = |a||b|;當(dāng)a與b反向時,ab = -|a||b|. 特別的aa = |a|2或 4 cosq = ;5|ab| ≤ |a||b| 5.平面向量數(shù)量積的運(yùn)算律 交換律:a

3、 b = b a 數(shù)乘結(jié)合律:(a)b =(ab) = a(b) 分配律:(a + b)c = ac + bc 二、講解新課: ⒈ 平面兩向量數(shù)量積的坐標(biāo)表示 已知兩個非零向量,,試用和的坐標(biāo)表示. 設(shè)是軸上的單位向量,是軸上的單位向量,那么, 所以 又,,,所以 這就是說:兩個向量的數(shù)量積等于它們對應(yīng)坐標(biāo)的乘積的和.即 2. 平面內(nèi)兩點(diǎn)間的距離公式 一、 設(shè),則或. (2)如果表示向量的有向線段的起點(diǎn)和終點(diǎn)的坐標(biāo)分別為、,那么(平面內(nèi)兩點(diǎn)間的距離公式) 二、 向量垂直的判定 設(shè),,則 三、 兩向量夾角的余弦() cosq = 四、 講解范例:

4、五、 設(shè)a = (5, -7),b = (-6, -4),求ab及a、b間的夾角θ(精確到1o) 例2 已知A(1, 2),B(2, 3),C(-2, 5),試判斷△ABC的形狀,并給出證明. 例3 已知a = (3, -1),b = (1, 2),求滿足xa = 9與xb = -4的向量x. 解:設(shè)x = (t, s), 由 ∴x = (2, -3) 例4 已知a=(1,),b=(+1,-1),則a與b的夾角是多少? 分析:為求a與b夾角,需先求ab及|a||b|,再結(jié)合夾角θ的范圍確定其值. 解:由a=(1,),b=(+1,-1) 有ab=+1+(-1)=4,|

5、a|=2,|b|=2. 記a與b的夾角為θ,則cosθ= 又∵0≤θ≤π,∴θ= 評述:已知三角形函數(shù)值求角時,應(yīng)注重角的范圍的確定. 例5 如圖,以原點(diǎn)和A(5, 2)為頂點(diǎn)作等腰直角△OAB,使B = 90,求點(diǎn)B和向量的坐標(biāo). 解:設(shè)B點(diǎn)坐標(biāo)(x, y),則= (x, y),= (x-5, y-2) ∵^ ∴x(x-5) + y(y-2) = 0即:x2 + y2 -5x - 2y = 0 又∵|| = || ∴x2 + y2 = (x-5)2 + (y-2)2即:10x + 4y = 29 由 ∴B點(diǎn)坐標(biāo)或;=或 例6 在△ABC中,=(2, 3),=(

6、1, k),且△ABC的一個內(nèi)角為直角, 求k值. 解:當(dāng)A = 90時,= 0,∴21 +3k = 0 ∴k = 當(dāng)B = 90時,= 0,=-= (1-2, k-3) = (-1, k-3) ∴2(-1) +3(k-3) = 0 ∴k = 當(dāng)C = 90時,= 0,∴-1 + k(k-3) = 0 ∴k = 六、 課堂練習(xí): 1.若a=(-4,3),b=(5,6),則3|a|2-4ab=( ) A.23 B.57 C.63 D.83 2.已知A(1,2),B(2,3),C(-2,5),則△A

7、BC為( ) A.直角三角形 B.銳角三角形 C.鈍角三角形 D.不等邊三角形 3.已知a=(4,3),向量b是垂直a的單位向量,則b等于( ) A.或 B.或 C.或 D.或 4.a=(2,3),b=(-2,4),則(a+b)(a-b)= . 5.已知A(3,2),B(-1,-1),若點(diǎn)P(x,-)在線段AB的中垂線上,則x= . 6.已知A(1,0),B(3,1),C(2,0),且a=,b=,則a與b的夾角為 小結(jié)(略) 七、 課后作業(yè)(略) 八、 板書設(shè)計(jì)(略) 九、 課后記: 4

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!