高中數(shù)學(xué) 課時分層作業(yè)13 拋物線的簡單幾何性質(zhì) 新人教A版選修21

上傳人:仙*** 文檔編號:38059132 上傳時間:2021-11-05 格式:DOC 頁數(shù):6 大小:103.50KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 課時分層作業(yè)13 拋物線的簡單幾何性質(zhì) 新人教A版選修21_第1頁
第1頁 / 共6頁
高中數(shù)學(xué) 課時分層作業(yè)13 拋物線的簡單幾何性質(zhì) 新人教A版選修21_第2頁
第2頁 / 共6頁
高中數(shù)學(xué) 課時分層作業(yè)13 拋物線的簡單幾何性質(zhì) 新人教A版選修21_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 課時分層作業(yè)13 拋物線的簡單幾何性質(zhì) 新人教A版選修21》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 課時分層作業(yè)13 拋物線的簡單幾何性質(zhì) 新人教A版選修21(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 課時分層作業(yè)(十三)  拋物線的簡單幾何性質(zhì) (建議用時:40分鐘) [基礎(chǔ)達標練] 一、選擇題 1.方程y=-2所表示曲線的形狀是(  ) D [方程y=-2等價于故選D.] 2.過拋物線C:y2=12x的焦點作直線l交C于A(x1,y1),B(x2,y2)兩點,若x1+x2=6,則|AB|=(  ) A.16  B.12   C.10   D.8 B [由題意知p=6,故|AB|=x1+x2+p=12.] 3.過點(2,4)的直線與拋物線y2=8x只有一個公共點,這樣的直線有(  ) 【導(dǎo)學(xué)號:46342115】 A.1條 B.2條 C.3條 D.4

2、條 B [點(2,4)在拋物線y2=8x上,則過該點與拋物線相切的直線和過該點與x軸平行的直線都與拋物線只有一個公共點,故選B.] 4.已知拋物線y2=2px(p>0),過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的縱坐標為2,則該拋物線的準線方程為 (  ) A.x=1 B.x=-1 C.x=2 D.x=-2 B [易知拋物線的焦點為F,所以過焦點且斜率為1的直線的方程為y=x-,即x=y(tǒng)+,代入y2=2px得y2=2p=2py+p2,即y2-2py-p2=0,由根與系數(shù)的關(guān)系得=p=2(y1,y2分別為點A,B的縱坐標),所以拋物線的方程為y2=4x,準線方程為

3、x=-1.] 5.設(shè)拋物線y2=8x的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-,那么|PF|=(  ) A.4 B.8 C.8 D.16 B [設(shè)P(x0,y0),則A(-2,y0),又F(2,0) 所以=-,即y0=4. 由y=8x0得8x0=48,所以x0=6. 從而|PF|=6+2=8.] 二、填空題 6.直線y=kx+2與拋物線y2=8x有且只有一個公共點,則k=________. 0或1 [當(dāng)k=0時,直線與拋物線有唯一交點,當(dāng)k≠0時,聯(lián)立方程消去y得k2x2+4(k-2)x+4=0,由題意Δ=16(k-2)2-16k2=

4、0,∴k=1.] 7.2017設(shè)拋物線y2=4x的焦點為F,準線為l.已知點C在l上,以C為圓心的圓與y軸的正半軸相切于點A.若∠FAC=120,則圓的方程為________________. (x+1)2+(y-)2=1 [由y2=4x可得點F的坐標為(1,0),準線l的方程為x=-1. 由圓心C在l上,且圓C與y軸正半軸相切(如圖),可得點C的橫坐標為-1,圓的半徑為1,∠CAO=90.又因為∠FAC=120,所以∠OAF=30,所以|OA|=,所以點C的縱坐標為. 所以圓的方程為(x+1)2+(y-)2=1.] 8.拋物線y2=4x上的點到直線x-y+4=0的最小距離為____

5、____. 【導(dǎo)學(xué)號:46342116】  [設(shè)與直線x-y+4=0平行且與拋物線y2=4x相切的直線方程為x-y+m=0. 由得x2+(2m-4)x+m2=0 則Δ=(2m-4)2-4m2=0,解得m=1 即直線方程為x-y+1=0 直線x-y+4=0與直線x-y+1=0的距離為d==. 即拋物線y2=4x上的點到直線x-y+4=0的最小距離為.] 三、解答題 9.已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點P(4,m)到焦點的距離為6. (1)求拋物線C的方程. (2)若拋物線C與直線y=kx-2相交于不同的兩點A,B,且AB中點橫坐標為2,求k的值.

6、 [解] (1)由題意設(shè)拋物線方程為y2=2px,其準線方程為x=-,因為P(4,m)到焦點的距離等于P到其準線的距離,所以4+=6,所以p=4,所以拋物線C的方程為y2=8x. (2)由消去y,得k2x2-(4k+8)x+4=0. 因為直線y=kx-2與拋物線相交于不同的兩點A,B,則有k≠0,Δ=64(k+1)>0, 解得k>-1且k≠0. 又==2, 解得k=2或k=-1(舍去),所以k的值為2. 10.已知AB是拋物線y2=2px(p>0)的過焦點F的一條弦.設(shè)A(x1,y1),B(x2,y2),AB的中點為M(x0,y0).求證: (1)若AB的傾斜角為θ,則|AB|=

7、; (2)x1x2=,y1y2=-p2; (3)+為定值. 【導(dǎo)學(xué)號:46342117】 [證明] (1)設(shè)直線AB的方程為x=my+,代入y2=2px,可得y2-2pmy-p2=0, y1y2=-p2,y1+y2=2pm, ∴y+y=2p(x1+x2)=(y1+y2)2-2y1y2=4p2m2+2p2,∴x1+x2=2pm2+p, ∴θ=90時,m=0,x1+x2=p,∴|AB|=x1+x2+p=2p=; θ≠90時,m=,x1+x2=+p,∴|AB|=x1+x2+p=+2p=. ∴|AB|=. (2)由(1)知,y1y2=-p2,∴x1x2==; (3)+=+===

8、. [能力提升練] 1.已知拋物線x2=2py(p>0)的焦點為F,過F作傾斜角為30的直線與拋物線交于A,B兩點,若∈(0,1),則=(  ) A. B. C. D. C [因為拋物線的焦點為F,故過點F且傾斜角為30的直線的方程為y=x+,與拋物線方程聯(lián)立得x2-px-p2=0,解方程得xA=-p,xB=p,所以==,故選C.] 2.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上,且MN⊥l,則M到直線NF的距離為(  ) A. B.2 C.2 D.3 C [拋物線y2=4x的焦點為F(1,0),準線方

9、程為x=-1.由直線方程的點斜式可得直線MF的方程為y=(x-1). 聯(lián)立得方程組 解得或 ∵點M在x軸的上方, ∴M(3,2). ∵MN⊥l, ∴N(-1,2). ∴|NF|==4, |MF|=|MN|==4. ∴△MNF是邊長為4的等邊三角形. ∴點M到直線NF的距離為2. 故選C.] 3.已知點A(2,0),B(4,0),動點P在拋物線y2=-4x上運動,則取得最小值時的點P的坐標是________. (0,0) [設(shè)P(x0,y0),則=(x0-2,y0), =(x0-4,y0), 所以=(x0-2)(x0-4)+y,又y=-4x0, 所以=x-10

10、x0+8=(x0-5)2-17, 因為x0≤0,所以當(dāng)x0=0時,取得最小值. 此時點P的坐標為(0,0).] 4.已知拋物線y2=4x,過點P(4,0)的直線與拋物線相交于A(x1,y1),B(x2,y2)兩點,則y+y的最小值是________. 【導(dǎo)學(xué)號:46342118】 32 [y=4x1,y=4x2,則y+y=4(x1+x2) 若過點P(4,0)的直線垂直于x軸,則直線方程為x=4, 此時x1+x2=8,y+y=32, 若過點P(4,0)的直線存在斜率,則設(shè)直線方程為y=k(x-4),由得k2x2-(8k2+4)x+16k2=0, 則x1+x2=8+>8,此時y

11、+y>32 因此y+y的最小值為32.] 5.已知點A,B是拋物線y2=2px(p>0)上的兩點,且OA⊥OB. (1)求兩點的橫坐標之積和縱坐標之積. (2)求證:直線AB過定點. [解] (1)設(shè)點A,B的坐標分別為(x1,y1),(x2,y2),則有kOA=,kOB=. 因為OA⊥OB,所以kOAkOB=-1,所以x1x2+y1y2=0. 因為y=2px1,y=2px2,所以+y1y2=0. 因為y1≠0,y2≠0,所以y1y2=-4p2,所以x1x2=4p2. (2)證明:因為y=2px1,y=2px2,兩式相減得(y1-y2)(y1+y2)=2p(x1-x2),

12、所以=,所以kAB=,故直線AB的方程為y-y1=(x-x1), 所以y=+y1-, 即y=+. 因為y=2px1,y1y2=-4p2,代入整理得y=+, 所以y=(x-2p), 即直線AB過定點(2p,0). 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!