《廣東省廣州市高考數學一輪復習 專項檢測試題:29 函數綜合測試題1》由會員分享,可在線閱讀,更多相關《廣東省廣州市高考數學一輪復習 專項檢測試題:29 函數綜合測試題1(6頁珍藏版)》請在裝配圖網上搜索。
1、
高考數學精品復習資料
2019.5
函數綜合測試題01
1、設函數成立的取值范圍。
解:由于是增函數,等價于......①
(1)當時,,①式恒成立;
(2)當時,,①式化為,即;
(3)當時,,①式無解;
綜上,的取值范圍是。
2、設關于的方程的兩根為,函數。
(1)求的值;
(2)證明是上的增函數;
(3)試確定為何值時,在區(qū)間上的最大值與最小值之差最小。
解:(1)
(2)定義法;略
(3)函數在上最大值,最小值,
當且僅當時,取最小值4,此時
3、討論函數在區(qū)間上
2、的單調性。
解:設=,
于是當當
故當,函數在上是增函數;
當,函數在為減函數。
4、已知函數為常數)。
(1)求函數的定義域;
(2)若,試根據單調性定義確定函數的單調性;
(3)若函數是增函數,求的取值范圍。
解:(1)由
∵ ∴的定義域是。
(2)若,則設,則
故為增函數。
(3)設
①
∵是增函數,∴
②聯立①、②知,∴。
5、已知函數,且函數的圖象關于直線對稱,又
。
(1)求的值域;
(2)是否存在實數,使命題和滿足復合命題
為真命題?若存在,求出的范圍;若不存在,說明理由。
解:(1)由,于是,
由,此函數在是單調
3、減函數,從而的值域為;
(2)假定存在的實數滿足題設,即和都成立
又,∴,∴,
由的值域為,則的定義域為,已證在上是減函數,則在
也是減函數,由減函數的定義得解得,且≠,因此存在
實數使得命題:且為真命題,且的取值范圍為。
6、已知函數是偶函數。
(1)求的值;
(2)設,若函數與的圖象有且只有一個公共點,求實數的取值范圍。
解:(1)由函數是偶函數可知:,
即對一切恒成立,;
(2)函數與的圖象有且只有一個公共點,即方程
有且只有一個實根,化簡得:方程有且只有一個實根;
令,則方程有且只有一個正根,①,不合題意;
②或,若,不合題意;若;③一個正根
4、與一
個負根,即;綜上:實數的取值范圍是。
7、已知函數。
(1)求證:函數在內單調遞增;
(2)若,且關于的方程在上有解,求的取值范圍。
解:(1)證明:任取,則,
,,
,即函數在內單調遞增。
(2)解法1:由得
, 當時,,
的取值范圍是。
解法2:解方程,得,
,解得 ,
的取值范圍是。
8、已知函數是奇函數。
(1)求實數的值;
(2)判斷函數在上的單調性,并給出證明;
(3)當時,函數的值域是,求實數與的值;
(4)設函數,當時,存在最大實數,使得
時,不等式恒成立,試確定與之間的關系。
解:(1)。
(2)由(1)及題設知:,設,
當時,,
當時,,即;
當時,在上是減函數;同理當時,在上是增函數;
(3)由題設知:函數的定義域為,
①當時,有,由(1)及(2)題設知:在為增函數,由其值域為知,無解; ②當時,有,由(1、2)題設知:在為減函數,由其值域為知,,得,;
(4)由(1)題設知:,
則函數的對稱軸,∴,函數在上單調減,,是最大實數使得,恒有成立,
,即。