《人教版高中數(shù)學(xué)必修二檢測:第一章 空間幾何體 課后提升作業(yè) 三 1.2.11.2.2含解析》由會員分享,可在線閱讀,更多相關(guān)《人教版高中數(shù)學(xué)必修二檢測:第一章 空間幾何體 課后提升作業(yè) 三 1.2.11.2.2含解析(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
人教版高中數(shù)學(xué)必修精品教學(xué)資料
課后提升作業(yè)三
中心投影與平行投影 空間幾何體的三視圖
(45分鐘 70分)
一、選擇題(每小題5分,共40分)
1.下列哪個實(shí)例不是中心投影 ( )
A.工程圖紙 B.小孔成像
C.相片 D.人的視覺
【解析】選A.根據(jù)中心投影的定義知道其為光線由一點(diǎn)發(fā)出來形成的投影,在這幾個選項(xiàng)中小孔成像、相片、人的視覺都是中心投影,只有工程圖紙是平行投影.
2.一個幾何體的三視圖如圖所示,則該幾何體可以是 ( )
A.棱柱 B.棱臺 C.圓柱 D.圓臺
【解題指南】本題考查的是幾何體的三視圖,在
2、判斷時要結(jié)合三種視圖進(jìn)行判斷.
【解析】選D.根據(jù)幾何體的三視圖中正視圖與側(cè)視圖一致且為梯形,并且俯視圖是兩個圓,可知只有選項(xiàng)D合適,故選D.
3.(2016懷仁高二檢測)已知某一幾何體的正視圖與側(cè)視圖如圖所示,則在下列圖形中,可以是該幾何體的俯視圖的圖形有 ( )
A.①②③⑤ B.②③④⑤
C.①②④⑤ D.①②③④
【解析】選D.因幾何體的正視圖和側(cè)視圖一樣,所以易判斷出其俯視圖可能為①②③④,故選D.
4.(2016邢臺高二檢測)如圖,網(wǎng)格紙的各小格都是正方形,粗實(shí)線畫出的是一個幾何體的三視圖,則這個幾何體是 ( )
A.三棱錐
3、 B.三棱柱
C.四棱錐 D.四棱柱
【解析】選B.根據(jù)三視圖分析可知,該幾何體是三棱柱.
5.(2016株洲高一檢測)已知某幾何體的正視圖和側(cè)視圖均如圖所示,給出下列5個圖形:
其中可以作為該幾何體的俯視圖的圖形個數(shù)是 ( )
A.5個 B.4個 C.3個 D.2個
【解析】選B.由正視圖和側(cè)視圖可知,幾何體可以為圓柱挖去一個小圓柱,圓柱挖去長方體,長方體挖去圓柱,長方體挖去直三棱柱,所以圖①②③⑤都可作俯視圖,圖④不能.
6.如圖是一正方體被過棱的中點(diǎn)M,N和頂點(diǎn)A,D,C1的兩個截面截去兩個角后所得的幾何體,則該幾何體的正視圖
4、為 ( )
【解析】選B.棱C1D看不到,故為虛線;棱AM可以看到,故為實(shí)線;顯然正視圖為B.
7.(2016上饒高二檢測)已知如圖所示的正方體ABCD-A1B1C1D1,點(diǎn)P,Q分別在棱BB1,DD1上,且=,過點(diǎn)A,P,Q作截面截去該正方體的含點(diǎn)A1的部分,則下列圖形中不可能是截去后剩下幾何體的正視圖的是 ( )
【解析】選A.當(dāng)P,B1重合時,正視圖為選項(xiàng)B;當(dāng)P到B點(diǎn)的距離比B1近時,正視圖為選項(xiàng)C;當(dāng)P到B點(diǎn)的距離比B1遠(yuǎn)時,正視圖為選項(xiàng)D,因此答案為A.
8.已知點(diǎn)E,F,G分別是正方體ABCD-A1B1C1D1的棱AA1,CC1,DD1的中點(diǎn),點(diǎn)M,N,Q
5、,P分別在線段DF,AG,BE,C1B1上.以M,N,Q,P為頂點(diǎn)的三棱錐P-MNQ的俯視圖不可能是 ( )
【解析】選C.如圖(1),俯視圖即為A,當(dāng)M,N,Q,P分別為DF,AG,BE,C1B1中點(diǎn)時,俯視圖為B.如圖(2),俯視圖即為D.不管P,Q,M,N在什么位置,俯視圖都不可能是一個正三角形,故選C.
二、填空題(每小題5分,共10分)
9.(2016桂林高二檢測)如圖,E、F分別是正方體的面ADD1A1,面BCC1B1的中心,則四邊形BFD1E在該正方體的面上的正射影可能是________.(要求:把可能的圖的序號都填上)
【解析】因?yàn)檎襟w是對稱的幾
6、何體,所以四邊形BFD1E在該正方體的面上的射影可分為:上下、左右、前后三個方向的射影,也就是在面ABCD,面ABB1A1,面ADD1A1上的射影,四邊形BFD1E在面ABCD和面ABB1A1上的射影相同,如圖②所示;四邊形BFD1E在該正方體對角面的ABC1D1內(nèi),它在面ADD1A1上的射影顯然是一條線段,如圖③所示.故②③正確.
答案:②③
【補(bǔ)償訓(xùn)練】如圖,點(diǎn)O為正方體ABCD-A′B′C′D′的中心,點(diǎn)E為面B′BCC′的中心,點(diǎn)F為B′C′的中點(diǎn),則空間四邊形D′OEF在該正方體的面上的正投影可能是________(填出所有可能的序號).
【解題指南】根據(jù)平行投影的特點(diǎn)和正
7、方體的性質(zhì),分別從正方體三個不同的角度來觀察正方體,得到三個不同的投影圖,逐個檢驗(yàn),得到結(jié)果.
【解析】要畫出四邊形OEFD′在該正方體的各個面上的投影,只需畫出四個頂點(diǎn)O,E,F,D′在每個面上的投影,再順次連接就可得到在該面上的投影,并且在兩個相對面上的投影是相同的.在面ABCD和面A′B′C′D′上的投影是③;在面ADD′A′和面BCC′B′上的投影是②;在面ABB′A′和面DCC′D′上的投影是①.故答案為①②③.
答案:①②③
10.(2016哈爾濱高二檢測)如圖,下列四個幾何體中,它們的三視圖(正視圖、俯視圖、側(cè)視圖)有且僅有兩個相同,而另一個不同的兩個幾何體是_______
8、_.
(1)棱長為2的正方體 (2)底面直徑和高均為2的圓柱
(3)底面直徑和高
均為2的圓錐
【解析】依題可知(1)中三視圖均是邊長為2的正方形.(2)正視圖與側(cè)視圖是邊長為2的正方形,俯視圖是直徑為2的圓.(3)正視圖與側(cè)視圖均是底邊長和高都為2的等腰三角形,俯視圖是直徑為2的圓.
答案:(2)(3)
三、解答題(每小題10分,共20分)
11.(2016德州高一檢測)已知某幾何體的三視圖(單位:cm)如圖所示,試畫出該幾何體.
【解析】由三視圖可知該幾何體是一個長、寬、高分別為6,3,6的長方體在一頂角上去掉一個側(cè)棱長分別為4,3,4的三棱錐的多面體,如圖:
12.用小立方體搭成一個幾何體,使它的正視圖和俯視圖如圖所示,搭建這樣的幾何體,最多要幾個小立方體?最少要幾個小立方體?
【解析】由于正視圖中每列的層數(shù)即是俯視圖中該列的最大數(shù)字,因此,用的立方塊數(shù)最多的情況是每個方框都用該列的最大數(shù)字,即如圖①所示,此種情況共用小立方塊17塊,即最多要17塊.
而搭建這樣的幾何體用小立方體個數(shù)最少的情況是每列只要有一個最大的數(shù)字,其他方框內(nèi)的數(shù)字可減少到最少的1,即如圖②所示,這樣的擺法只需小立方塊11塊,即最少要11塊.
關(guān)閉Word文檔返回原板塊