14高三畢業(yè)班數(shù)學課本知識點整理歸納之十四 第十四章極限與導數(shù)
《14高三畢業(yè)班數(shù)學課本知識點整理歸納之十四 第十四章極限與導數(shù)》由會員分享,可在線閱讀,更多相關《14高三畢業(yè)班數(shù)學課本知識點整理歸納之十四 第十四章極限與導數(shù)(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2010-2011年高三畢業(yè)班數(shù)學課本知識點整理歸納之十四 第十四章 極限與導數(shù) 一、 基礎知識 1.極限定義:(1)若數(shù)列{un}滿足,對任意給定的正數(shù)ε,總存在正數(shù)m,當n>m且n∈N時,恒有|un-A|<ε成立(A為常數(shù)),則稱A為數(shù)列un當n趨向于無窮大時的極限,記為,另外=A表示x大于x0且趨向于x0時f(x)極限為A,稱右極限。類似地表示x小于x0且趨向于x0時f(x)的左極限。 2.極限的四則運算:如果f(x)=a, g(x)=b,那么[f(x)±g(x)]=a±b, [f(x)?g(x)]=ab, 3.連續(xù):如果函數(shù)f(x)
2、在x=x0處有定義,且f(x)存在,并且f(x)=f(x0),則稱f(x)在x=x0處連續(xù)。 4.最大值最小值定理:如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在[a,b]上有最大值和最小值。 5.導數(shù):若函數(shù)f(x)在x0附近有定義,當自變量x在x0處取得一個增量Δx時(Δx充分?。?,因變量y也隨之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若存在,則稱f(x)在x0處可導,此極限值稱為f(x)在點x0處的導數(shù)(或變化率),記作(x0)或或,即。由定義知f(x)在點x0連續(xù)是f(x)在x0可導的必要條件。若f(x)在區(qū)間I上有定義,且在每一點可導,則稱它在此敬意上可導
3、。導數(shù)的幾何意義是:f(x)在點x0處導數(shù)(x0)等于曲線y=f(x)在點P(x0,f(x0))處切線的斜率。 6.幾個常用函數(shù)的導數(shù):(1)=0(c為常數(shù));(2)(a為任意常數(shù));(3)(4);(5);(6);(7);(8) 7.導數(shù)的運算法則:若u(x),v(x)在x處可導,且u(x)≠0,則 (1);(2);(3)(c為常數(shù));(4);(5)。 8.復合函數(shù)求導法:設函數(shù)y=f(u),u=(x),已知(x)在x處可導,f(u)在對應的點u(u=(x))處可導,則復合函數(shù)y=f[(x)]在點x處可導,且(f[(x)]=. 9.導數(shù)與函數(shù)的性質(zhì):(1)若f(x)在區(qū)間I上可導,則
4、f(x)在I上連續(xù);(2)若對一切x∈(a,b)有,則f(x)在(a,b)單調(diào)遞增;(3)若對一切x∈(a,b)有,則f(x)在(a,b)單調(diào)遞減。 10.極值的必要條件:若函數(shù)f(x)在x0處可導,且在x0處取得極值,則 11.極值的第一充分條件:設f(x)在x0處連續(xù),在x0鄰域(x0-δ,x0+δ)內(nèi)可導,(1)若當x∈(x-δ,x0)時,當x∈(x0,x0+δ)時,則f(x)在x0處取得極小值;(2)若當x∈(x0-δ,x0)時,當x∈(x0,x0+δ)時,則f(x)在x0處取得極大值。 12.極值的第二充分條件:設f(x)在x0的某領域(x0-δ,x0+δ)內(nèi)一階可導,在x=x
5、0處二階可導,且。(1)若,則f(x)在x0處取得極小值;(2)若,則f(x)在x0處取得極大值。 13.羅爾中值定理:若函數(shù)f(x)在[a,b]上連續(xù),在(a,b)上可導,且f(a)=f(b),則存在ξ∈(a,b),使 [證明] 若當x∈(a,b),f(x)≡f(a),則對任意x∈(a,b),.若當x∈(a,b)時,f(x)≠f(a),因為f(x)在[a,b]上連續(xù),所以f(x)在[a,b]上有最大值和最小值,必有一個不等于f(a),不妨設最大值m>f(a)且f(c)=m,則c∈(a,b),且f(c)為最大值,故,綜上得證。 14.Lagrange中值定理:若f(x)在[a,b
6、]上連續(xù),在(a,b)上可導,則存在ξ∈(a,b),使 [證明] 令F(x)=f(x)-,則F(x)在[a,b]上連續(xù),在(a,b)上可導,且F(a)=F(b),所以由13知存在ξ∈(a,b)使=0,即 15.曲線凸性的充分條件:設函數(shù)f(x)在開區(qū)間I內(nèi)具有二階導數(shù),(1)如果對任意x∈I,,則曲線y=f(x)在I內(nèi)是下凸的;(2)如果對任意x∈I,,則y=f(x)在I內(nèi)是上凸的。通常稱上凸函數(shù)為凸函數(shù),下凸函數(shù)為凹函數(shù)。 16.琴生不等式:設α1,α2,…,αn∈R+,α1+α2+…+αn=1。(1)若f(x)是[a,b]上的凸函數(shù),則x1,x2,…,xn∈[a,b]有f(a1x1
7、+a2x2+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn). 二、方法與例題 1.極限的求法。 例1 求下列極限:(1);(2);(3);(4) [解](1)=; (2)當a>1時, 當0<a<1時, 當a=1時, (3)因為 而 所以 (4) 例2 求下列極限:(1)(1+x)(1+x2)(1+)…(1+)(|x|<1); (2);(3)。 [解] (1)(1+x)(1+x2)(1+)…(1+) = (2) = (3) = 2.連續(xù)性的討論。 例3 設f(x)在(-∞,+∞)內(nèi)有定義,且恒滿足
8、f(x+1)=2f(x),又當x∈[0,1)時,f(x)=x(1-x)2,試討論f(x)在x=2處的連續(xù)性。 [解] 當x∈[0,1)時,有f(x)=x(1-x)2,在f(x+1)=2f(x)中令x+1=t,則x=t-1,當x∈[1,2)時,利用f(x+1)=2f(x)有f(t)=2f(t-1),因為t-1∈[0,1),再由f(x)=x(1-x)2得f(t-1)=(t-1)(2-t)2,從而t∈[1,2)時,有f(t)=2(t-1)?(2-t)2;同理,當x∈[1,2)時,令x+1=t,則當t∈[2,3)時,有f(t)=2f(t-1)=4(t-2)(3-t)2.從而f(x)=所以
9、 所以 ,所以f(x)=f(x)=f(2)=0,所以f(x)在x=2處連續(xù)。 3.利用導數(shù)的幾何意義求曲線的切線方程。 [解] 因為點(2,0)不在曲線上,設切點坐標為(x0,y0),則,切線的斜率為,所以切線方程為y-y0=,即。又因為此切線過點(2,0),所以,所以x0=1,所以所求的切線方程為y=-(x-2),即x+y-2=0. 4.導數(shù)的計算。 例5 求下列函數(shù)的導數(shù):(1)y=sin(3x+1);(2);(3)y=ecos2x;(4);(5)y=(1-2x)x(x>0且)。 [解] (1)3cos(3x+1). (2) (3) (4)
10、 (5) 5.用導數(shù)討論函數(shù)的單調(diào)性。 例6 設a>0,求函數(shù)f(x)=-ln(x+a)(x∈(0,+∞))的單調(diào)區(qū)間。 [解] ,因為x>0,a>0,所以x2+(2a-4)x+a2>0;x2+(2a-4)x+a+<0. (1)當a>1時,對所有x>0,有x2+(2a-4)x+a2>0,即(x)>0,f(x)在(0,+∞)上單調(diào)遞增;(2)當a=1時,對x≠1,有x2+(2a-4)x+a2>0,即,所以f(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)遞增,又f(x)在x=1處連續(xù),因此f(x)在(0,+∞)內(nèi)遞增
11、;(3)當0<a<1時,令,即x2+(2a-4)x+a2>0,解得x<2-a-或x>2-a+,因此,f(x)在(0,2-a-)內(nèi)單調(diào)遞增,在(2-a+,+∞)內(nèi)也單調(diào)遞增,而當2-a-<x<2-a+時,x2+(2a-4)x+a2<0,即,所以f(x)在(2-a-,2-a+)內(nèi)單調(diào)遞減。 6.利用導數(shù)證明不等式。 例7 設,求證:sinx+tanx>2x. [證明] 設f(x)=sinx+tanx-2x,則=cosx+sec2x-2,當時,(因為0<cosx<1),所以=cosx+sec2x-2=cosx+.又f(x)在
12、上連續(xù),所以f(x)在上單調(diào)遞增,所以當x∈時,f(x)>f(0)=0,即sinx+tanx>2x. 7.利用導數(shù)討論極值。 例8 設f(x)=alnx+bx2+x在x1=1和x2=2處都取得極值,試求a與b的值,并指出這時f(x)在x1與x2處是取得極大值還是極小值。 [解] 因為f(x)在(0,+∞)上連續(xù),可導,又f(x)在x1=1,x2=2處取得極值,所以,又+2bx+1,所以解得 所以. 所以當x∈(0,1)時,,所以f(x)在(0,1]上遞減; 當x∈(1,2)時,,所以f(x)在[1,2]上遞增; 當x∈(2,+∞)時,,所以f(x)在[2,+∞)上
13、遞減。 綜上可知f(x)在x1=1處取得極小值,在x2=2處取得極大值。 例9 設x∈[0,π],y∈[0,1],試求函數(shù)f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x的最小值。 [解] 首先,當x∈[0,π],y∈[0,1]時, f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x=(1-y)2x,令g(x)=, 當時,因為cosx>0,tanx>x,所以; 當時,因為cosx<0,tanx<0,x-tanx>0,所以; 又因為g(x)在(0,π)上連續(xù),所以g(x)在(0,π)上單調(diào)遞減。
14、又因為0<(1-y)x<x<π,所以g[(1-y)x]>g(x),即, 又因為,所以當x∈(0,π),y∈(0,1)時,f(x,y)>0. 其次,當x=0時,f(x,y)=0;當x=π時,f(x,y)=(1-y)sin(1-y)π≥0. 當y=1時,f(x,y)=-sinx+sinx=0;當y=1時,f(x,y)=sinx≥0. 綜上,當且僅當x=0或y=0或x=π且y=1時,f(x,y)取最小值0。 三、基礎訓練題 1.=_________. 2.已知,則a-b=_________. 3._________. 4._________. 5.計
15、算_________. 6.若f(x)是定義在(-∞,+∞)上的偶函數(shù),且存在,則_________. 7.函數(shù)f(x)在(-∞,+∞)上可導,且,則_________. 8.若曲線f(x)=x4-x在點P處的切線平行于直線3x-y=0,則點P坐標為_________. 9.函數(shù)f(x)=x-2sinx的單調(diào)遞增區(qū)間是_________. 10.函數(shù)的導數(shù)為_________. 11.若曲線在點處的切線的斜率為,求實數(shù)a. 12.求sin290的近似值。 13.設0<b<a<,求證: 四、高考水平練習題 1.計算=_________. 2.計算_____
16、____. 3.函數(shù)f(x)=2x3-6x2+7的單調(diào)遞增區(qū)間是_________.。 4.函數(shù)的導數(shù)是_________. 5.函數(shù)f(x)在x0鄰域內(nèi)可導,a,b為實常數(shù),若,則_________. 6.函數(shù)f(x)=ex(sinx+cosx),x的值域為_________. 7.過拋物線x2=2py上一點(x0,y0)的切線方程為_________. 8.當x>0時,比較大?。簂n(x+1) _________x. 9.函數(shù)f(x)=x5-5x4+5x3+1,x∈[-1,2]的最大值為_________,最小值為_________. 10.曲線y=e-x(x≥0)在
17、點M(t,e-t)處的切線l與x軸、y軸所圍成的三角形面積為S(t),則S(t)的最大值為_________. 11.若x>0,求證:(x2-1)lnx≥(x-1)2. 12.函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導。導函數(shù)是減函數(shù),且>0,x0∈(0,+∞).y=kx+m是曲線y=f(x)在點(x0,f(x0))處的切線方程,另設g(x)=kx+m,(1)用x0,f(x0),表示m;(2)證明:當x∈(0,+∞)時,g(x)≥f(x);(3)若關于x的不等式x2+1≥ax+b≥在(0,+∞)上恒成立,其中a,b為實數(shù),求b的取值范圍及a,b所滿足的關系。 13.設各項為正的
18、無窮數(shù)列{xn}滿足lnxn+,證明:xn≤1(n∈N+). 五、聯(lián)賽一試水平訓練題 1.設Mn={(十進制)n位純小數(shù)0?只取0或1(i=1,2,…,n-1),an=1},Tn是Mn中元素的個數(shù),Sn是Mn中所有元素的和,則_________. 2.若(1-2x)9展開式的第3項為288,則_________. 3.設f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時, ,且g(-3)=0,則不等式f(x)g(x)<0的解集為_________. 4.曲線與的交點處的切線夾角是_________. 5.已知a∈R+,函數(shù)f(x)=x2eax的單調(diào)遞增區(qū)間
19、為_________. 6.已知在(a,3-a2)上有最大值,則a的取值范圍是_________. 7.當x∈(1,2]時,f(x)=恒成立,則y=lg(a2-a+3)的最小值為_________. 8.已知f(x)=ln(ex+a)(a>0),若對任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln[]<0恒成立,則實數(shù)m取值范圍是_________. 9.已知函數(shù)f(x)=ln(1+x)-x,g(x)=xlnx,(1)求函數(shù)f(x)的最大值;(2)設0<a<b,證明:0<g(a)+g(b)-<(b-a)ln2. 10.(1)
20、設函數(shù)f(x)=xlog2x+(1-x)log2(1-x) (0<x<1),求f(x)的最小值;(2)設正數(shù)p1,p2,…,滿足p1+p2+p3+…+=1,求證:p1log2p1+p2 log2p2+…+log2≥-n. 11.若函數(shù)gA(x)的定義域A=[a,b),且gA(x)=,其中a,b為任意的正實數(shù),且a<b,(1)求gA(x)的最小值; (2)討論gA(x)的單調(diào)性; (3)若x1∈Ik=[k2,(k+1)2],x2∈Ik+1=[(k+1)2,(k+2)2],證明: 六、聯(lián)賽二試水平訓練題 1.證明下列不等式:(1); (2)。 2.當0<a≤b
21、≤c≤d時,求f(a,b,c,d)=的最小值。 3.已知x,y∈(0,1)求證:xy+yx>1. 2010-2011年高三畢業(yè)班數(shù)學課本知識點整理歸納之十八 第十八章 組合 一、方法與例題 1.抽屜原理。 例1 設整數(shù)n≥4,a1,a2,…,an是區(qū)間(0,2n)內(nèi)n個不同的整數(shù),證明:存在集合{a1,a2,…,an}的一個子集,它的所有元素之和能被2n整除。 [證明] (1)若n{a1,a2,…,an},則n個不同的數(shù)屬于n-1個集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。由抽屜原理知其中必存在兩個數(shù)ai,
22、aj(i≠j)屬于同一集合,從而ai+aj=2n被2n整除; (2)若n∈{a1,a2,…,an},不妨設an=n,從a1,a2,…,an-1(n-1≥3)中任意取3個數(shù)ai, aj, ak(ai,<aj< ak),則aj-ai與ak-ai中至少有一個不被n整除,否則ak-ai=(ak-aj)+(aj-ai)≥2n,這與ak∈(0,2n)矛盾,故a1,a2,…,an-1中必有兩個數(shù)之差不被n整除;不妨設a1與a2之差(a2-a1>0)不被n整除,考慮n個數(shù)a1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+an-1。 ?。┤暨@n個數(shù)中有一個被n整除,設此數(shù)等于k
23、n,若k為偶數(shù),則結論成立;若k為奇數(shù),則加上an=n知結論成立。 ⅱ)若這n個數(shù)中沒有一個被n整除,則它們除以n的余數(shù)只能取1,2,…,n-1這n-1個值,由抽屜原理知其中必有兩個數(shù)除以n的余數(shù)相同,它們之差被n整除,而a2-a1不被n整除,故這個差必為ai, aj, ak-1中若干個數(shù)之和,同ⅰ)可知結論成立。 2.極端原理。 例2 在n×n的方格表的每個小方格內(nèi)寫有一個非負整數(shù),并且在某一行和某一列的交叉點處如果寫有0,那么該行與該列所填的所有數(shù)之和不小于n。證明:表中所有數(shù)之和不小于。 [證明] 計算各行的和、各列的和,這2n個和中必有最小的,不妨設第m行的和最小
24、,記和為k,則該行中至少有n-k個0,這n-k個0所在的各列的和都不小于n-k,從而這n-k列的數(shù)的總和不小于(n-k)2,其余各列的數(shù)的總和不小于k2,從而表中所有數(shù)的總和不小于(n-k)2+k2≥ 3.不變量原理。 俗話說,變化的是現(xiàn)象,不變的是本質(zhì),某一事情反復地進行,尋找不變量是一種策略。 例3 設正整數(shù)n是奇數(shù),在黑板上寫下數(shù)1,2,…,2n,然后取其中任意兩個數(shù)a,b,擦去這兩個數(shù),并寫上|a-b|。證明:最后留下的是一個奇數(shù)。 [證明] 設S是黑板上所有數(shù)的和,開始時和數(shù)是S=1+2+…+2n=n(2n+1),這是一個奇數(shù),因為|a-b|與a+b有相同的奇偶性,故整個
25、變化過程中S的奇偶性不變,故最后結果為奇數(shù)。 例4 數(shù)a1, a2,…,an中每一個是1或-1,并且有S=a1a2a3a4+ a2a3a4a5+…+ana1a2a3=0. 證明:4|n. [證明] 如果把a1, a2,…,an中任意一個ai換成-ai,因為有4個循環(huán)相鄰的項都改變符號,S模4并不改變,開始時S=0,即S≡0,即S≡0(mod4)。經(jīng)有限次變號可將每個ai都變成1,而始終有S≡0(mod4),從而有n≡0(mod4),所以4|n。 4.構造法。 例5 是否存在一個無窮正整數(shù)數(shù)列a1,<a2<a3<…,使得對任意整數(shù)A,數(shù)列中僅有有限個素數(shù)。 [證
26、明] 存在。取an=(n!)3即可。當A=0時,{an}中沒有素數(shù);當|A|≥2時,若n≥|A|,則an+A均為|A|的倍數(shù)且大于|A|,不可能為素數(shù);當A=±1時,an±1=(n!±1)?[(n!)2±n!+1],當≥3時均為合數(shù)。從而當A為整數(shù)時,{(n!)3+A}中只有有限個素數(shù)。 例6 一個多面體共有偶數(shù)條棱,試證:可以在它的每條棱上標上一個箭頭,使得對每個頂點,指向它的箭頭數(shù)目是偶數(shù)。 [證明] 首先任意給每條棱一個箭頭,如果此時對每個頂點,指向它的箭頭數(shù)均為偶數(shù),則命題成立。若有某個頂點A,指向它的箭頭數(shù)為奇數(shù),則必存在另一個頂點B
27、,指向它的箭頭數(shù)也為奇數(shù)(因為棱總數(shù)為偶數(shù)),對于頂點A與B,總有一條由棱組成的“路徑”連結它們,對該路徑上的每條棱,改變它們箭頭的方向,于是對于該路徑上除A,B外的每個頂點,指向它的箭頭數(shù)的奇偶性不變,而對頂點A,B,指向它的箭頭數(shù)變成了偶數(shù)。如果這時仍有頂點,指向它的箭頭數(shù)為奇數(shù),那么重復上述做法,又可以減少兩個這樣的頂點,由于多面體頂點數(shù)有限,經(jīng)過有限次調(diào)整,總能使和是對每個頂點,指向它的箭頭數(shù)為偶數(shù)。命題成立。 5.染色法。 例7 能否在5×5方格表內(nèi)找到一條線路,它由某格中心出發(fā),經(jīng)過每個方格恰好一次,再回到出發(fā)點,并且途中不經(jīng)過任何方格的頂點? [解] 不可能。
28、將方格表黑白相間染色,不妨設黑格為13個,白格為12個,如果能實現(xiàn),因黑白格交替出現(xiàn),黑白格數(shù)目應相等,得出矛盾,故不可能。 6.凸包的使用。 給定平面點集A,能蓋住A的最小的凸圖形,稱為A的凸包。 例8 試證:任何不自交的五邊形都位于它的某條邊的同一側。 [證明] 五邊形的凸五包是凸五邊形、凸四邊形或者是三角形,凸包的頂點中至少有3點是原五邊形的頂點。五邊形共有5個頂點,故3個頂點中必有兩點是相鄰頂點。連結這兩點的邊即為所求。 7.賦值方法。 例9 由2×2的方格紙去掉一個方格余下的圖形稱為拐形,用這種拐形去覆蓋5×7的方格板,每個拐形恰覆蓋3個方格,可
29、以重疊但不能超出方格板的邊界,問:能否使方格板上每個方格被覆蓋的層數(shù)都相同?說明理由。 [解] 將5×7方格板的每一個小方格內(nèi)填寫數(shù)-2和1。如圖18-1所示,每個拐形覆蓋的三個數(shù)之和為非負。因而無論用多少個拐形覆蓋多少次,蓋住的所有數(shù)字之和都是非負的。另一方面,方格板上數(shù)字的總和為12×(-2)+23×1=-1,當被覆蓋K層時,蓋住的數(shù)字之和等于-K,這表明不存在滿足題中要求的覆蓋。 -2 1 -2 1 -2 1 -2 1 1 1 1 1 1 1 -2 1 -2 1 -2 1 -2 1 1 1 1 1 1
30、 1 -2 1 -2 1 -2 1 -2 8.圖論方法。 例10 生產(chǎn)由六種顏色的紗線織成的雙色布,在所生產(chǎn)的雙色布中,每種顏色的紗線至少與其他三種顏色的紗線搭配過。證明:可以挑出三種不同的雙色布,它們包含所有的顏色。 [證明] 用點A1,A2,A3,A4,A5,A6表示六種顏色,若兩種顏色的線搭配過,則在相應的兩點之間連一條邊。由已知,每個頂點至少連出三條邊。命題等價于由這些邊和點構成的圖中有三條邊兩兩不相鄰(即無公共頂點)。因為每個頂點的次數(shù)≥3,所以可以找到兩條邊不相鄰,設為A1A2,A3A4。 (1)若A5與A6連有一條邊,則A1A2,A3A4,A5A6
31、對應的三種雙色布滿足要求。 (2)若A5與A6之間沒有邊相連,不妨設A5和A1相連,A2與A3相連,若A4和A6相連,則A1A2,A3A4,A5A6對應的雙色布滿足要求;若A4與A6不相連,則A6與A1相連,A2與A3相連,A1A5,A2A6,A3A4對應的雙色布滿足要求。 綜上,命題得證。 二、習題精選 1.藥房里有若干種藥,其中一部分藥是烈性的。藥劑師用這些藥配成68副藥方,每副藥方中恰有5種藥,其中至少有一種是烈性的,并且使得任選3種藥恰有一副藥方包含它們。試問:全部藥方中是否一定有一副藥方至少含有4種烈性藥?(證明或否定) 2.21個女孩和21個男孩參加一次數(shù)學競賽,(1)每
32、一個參賽者最多解出6道題;(2)對每一個女孩和每一個男孩至少有一道題被這一對孩子都解出。求證:有一道題至少有3個女孩和至少有3個男孩都解出。 3.求證:存在無窮多個正整數(shù)n,使得可將3n個數(shù)1, 2,…, 3n排成數(shù)表 a1, a2…an b1, b2…bn c1, c2…cn 滿足:(1)a1+b1+c1= a2+b2+c2=…= an+bn+cn=,且為6的倍數(shù)。 (2)a1+a2+…+an= b1+b2+…+bn= c1+c2+…+cn=,且為6的倍數(shù)。 4.給定正整數(shù)n,已知克數(shù)都是正整數(shù)的k塊砝碼和一臺天平可以稱出質(zhì)量為1,2,…,n克的所有物品,求k的最小值f(n)。
33、 5.空間中有1989個點,其中任何3點都不共線,把它們分成點數(shù)各不相同的30組,在任何3個不同的組中各取一點為頂點作三角形。試問:為使這種三角形的總數(shù)最大,各組的點數(shù)應分別為多少? 6.在平面給定點A0和n個向量a1,a2,…,an,且使a1+a2+…+an =0。這組向量的每一個排列都定義一個點集:A1,A2,…,An=A0,使得 求證:存在一個排列,使由它定義的所有點A1,A2,…,An-1都在以A0為角頂?shù)哪硞€600角的內(nèi)部和邊上。 7.設m, n, k∈N,有4個酒杯,容量分別為m,n,k和m+n+k升,允許進行如下操作:將一個杯中的酒倒入另一杯中或者將另一杯倒?jié)M為止。開始時
34、,大杯中裝滿酒而另3個杯子卻空著,問:為使對任何S∈N,S<m+n+k,都可經(jīng)過若干次操作,使得某個杯子中恰有S升酒的關于m,n,k的充分必要條件是什么? 8.設有30個人坐在一張圓桌的周圍,其中的每個人都或者是白癡,或者是聰明人。對在座的每個人都提問:“你右邊的鄰座是聰明人還是白癡?”聰明人總是給出正確的答案,而白癡既可能回答正確,也可能回答不正確。已知白癡的個數(shù)不超過F,求總可以指出一位聰明人的最大的F。 9.某班共有30名學生,每名學生在班內(nèi)都有同樣多的朋友,期末時任何兩人的成績都可分出優(yōu)劣,沒有相同的。問:比自己的多半朋友的成績都要好的學生最多能有多少人? - 13 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專升本計算機基礎真題-2
- 中學班長競選演講稿
- 某公司工作保證書
- 教育強國建設規(guī)劃綱要(2024—2035年)要點解讀(教育是強國建設民族復興之基)
- 小學英語量詞用法詳解
- 四篇:2024年度民主生活會召開情況總結報告匯編
- 閥門主體材料
- 蝸桿傳動的效率、潤滑和熱平衡計算
- XX地區(qū)水利部門述職報告工作挑戰(zhàn)與應對
- 初中語文散文閱讀基礎知識點+經(jīng)典例題解析
- 專升本英語:??紕釉~搭配
- 21-01《中國近代文學史》自學考試題及答案
- 某公司元旦主題教育活動方案模板
- 廉潔過春節(jié)清風迎新村緊繃紀律弦廉潔過春節(jié)把好廉潔關過個廉潔年
- 小學英語實用口語100句