高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:專題二 函數(shù)與導數(shù) 專題能力訓練7 Word版含答案

上傳人:仙*** 文檔編號:41852508 上傳時間:2021-11-23 格式:DOC 頁數(shù):12 大?。?.17MB
收藏 版權申訴 舉報 下載
高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:專題二 函數(shù)與導數(shù) 專題能力訓練7 Word版含答案_第1頁
第1頁 / 共12頁
高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:專題二 函數(shù)與導數(shù) 專題能力訓練7 Word版含答案_第2頁
第2頁 / 共12頁
高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:專題二 函數(shù)與導數(shù) 專題能力訓練7 Word版含答案_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:專題二 函數(shù)與導數(shù) 專題能力訓練7 Word版含答案》由會員分享,可在線閱讀,更多相關《高三理科數(shù)學 新課標二輪復習專題整合高頻突破習題:專題二 函數(shù)與導數(shù) 專題能力訓練7 Word版含答案(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題能力訓練7 導數(shù)與函數(shù)的單調性、極值、最值 能力突破訓練 1.已知函數(shù)f(x)的導函數(shù)為f(x),且滿足f(x)=af(1)x+ln x,若f12=0,則a=(  )                  A.-1 B.-2 C.1 D.2 2.(20xx浙江,7)函數(shù)y=f(x)的導函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是(  ) 3.若定義在R上的函數(shù)f(x)滿足f(0)=-1,其導函數(shù)f(x)滿足f(x)>k>1,則下列結論中一定錯誤的是 (  ) A.f1k<1k B.f1k>1k-1 C.f1k-1<1k-1 D.f1k

2、-1>kk-1 4.已知常數(shù)a,b,c都是實數(shù),f(x)=ax3+bx2+cx-34的導函數(shù)為f(x),f(x)≤0的解集為{x|-2≤x≤3}.若f(x)的極小值等于-115,則a的值是(  ) A.-8122 B.13 C.2 D.5 5.若直線y=kx+b是曲線y=ln x+2的切線,也是曲線y=ln(x+1)的切線,則b=     . 6.在曲線y=x3+3x2+6x-1的切線中,斜率最小的切線方程為     . 7.設函數(shù)f(x)=aex+1aex+b(a>0). (1)求f(x)在[0,+∞)上的最小值; (2)設曲線y=f(x)在點(2,f(2))處的切線方程為y

3、=32x,求a,b的值. 8.設函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(2,f(2))處的切線方程為y=(e-1)x+4. (1)求a,b的值; (2)求f(x)的單調區(qū)間. 9.設a>1,函數(shù)f(x)=(1+x2)ex-a. (1)求f(x)的單調區(qū)間; (2)證明:f(x)在區(qū)間(-∞,+∞)上僅有一個零點; (3)若曲線y=f(x)在點P處的切線與x軸平行,且在點M(m,n)處的切線與直線OP平行(O是坐標原點),證明:m≤3a-2e-1.

4、 10.已知函數(shù)f(x)=13x3+1-a2x2-ax-a,x∈R,其中a>0. (1)求函數(shù)f(x)的單調區(qū)間; (2)若函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍; (3)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值. 思維提升訓練 11.(20xx陜西咸陽二模)已知定義在R上的函數(shù)f(x)的導函數(shù)為f(x),對任意x∈R滿足f(x)+f(x)<0,則下列結論正確的是(  ) A.e2f(

5、2)>e3f(3) B.e2f(2)0時,若f(x)>kx+1恒成立,求整數(shù)k的最大值. 14.已知函數(shù)f(x)=ln x-12ax2+x,a∈R. (1)若f(1)=0,求函數(shù)f(x)的單調遞減區(qū)間; (2

6、)若關于x的不等式f(x)≤ax-1恒成立,求整數(shù)a的最小值; (3)若a=-2,正實數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,求證:x1+x2≥5-12. 15.(20xx山東,理20)已知函數(shù)f(x)=x2+2cos x,g(x)=ex(cos x-sin x+2x-2),其中e≈2.718 28…是自然對數(shù)的底數(shù). (1)求曲線y=f(x)在點(π,f(π))處的切線方程. (2)令h(x)=g(x)-af(x)(a∈R),討論h(x)的單調性并判斷有無極值,有極值時求出極值.

7、 參考答案 專題能力訓練7 導數(shù)與函數(shù)的單調性、極值、最值 能力突破訓練 1.D 解析因為f(x)=af(1)+1x,所以f(1)=af(1)+1,易知a≠1,則f(1)=11-a,所以f(x)=a1-a+1x.又因為f12=0,所以a1-a+2=0,解得a=2.故選D. 2.D 解析設導函數(shù)y=f(x)的三個零點分別為x1,x2,x3,且x1<00,f(x)是增函數(shù), 所以函數(shù)y=f(x)的圖象可能為D,故選D.

8、 3.C 解析構造函數(shù)F(x)=f(x)-kx, 則F(x)=f(x)-k>0, ∴函數(shù)F(x)在R上為單調遞增函數(shù). ∵1k-1>0,∴F1k-1>F(0). ∵F(0)=f(0)=-1,∴f1k-1-kk-1>-1, 即f1k-1>kk-1-1=1k-1,∴f1k-1>1k-1,故C錯誤. 4.C 解析依題意得f(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-2b3a,-23=c3a,則b=-3a2,c=-18a. 函數(shù)f(x)在x=3處取得極小值,于是有f(3)=27a+9b+3c-34=-115, 則-812a=-81,解得a=2.故選

9、C. 5.1-ln 2 解析對函數(shù)y=lnx+2求導,得y=1x,對函數(shù)y=ln(x+1)求導,得y=1x+1.設直線y=kx+b與曲線y=lnx+2相切于點P1(x1,y1),與曲線y=ln(x+1)相切于點P2(x2,y2),則y1=lnx1+2,y2=ln(x2+1).由點P1(x1,y1)在切線上,得y-(lnx1+2)=1x1(x-x1),由點P2(x2,y2)在切線上,得y-ln(x2+1)=1x2+1(x-x2).因為這兩條直線表示同一條直線, 所以1x1=1x2+1,ln(x2+1)=lnx1+x2x2+1+1,解得x1=12, 所以k=1x1=2,b=lnx1+2-1=

10、1-ln2. 6.3x-y-2=0 解析y=3x2+6x+6=3(x+1)2+3≥3.當x=-1時,ymin=3;當x=-1時,y=-5. 故切線方程為y+5=3(x+1),即3x-y-2=0. 7.解(1)f(x)=aex-1aex. 當f(x)>0,即x>-lna時,f(x)在區(qū)間(-lna,+∞)內單調遞增; 當f(x)<0,即x<-lna時,f(x)在區(qū)間(-∞,-lna)內單調遞減. ①當00,f(x)在區(qū)間(0,-lna)內單調遞減,在區(qū)間(-lna,+∞)內單調遞增,從而f(x)在區(qū)間[0,+∞)內的最小值為f(-lna)=2+b; ②當a≥1

11、時,-lna≤0,f(x)在區(qū)間[0,+∞)內單調遞增, 從而f(x)在區(qū)間[0,+∞)內的最小值為f(0)=a+1a+b. (2)依題意f(2)=ae2-1ae2=32,解得ae2=2或ae2=-12(舍去). 所以a=2e2,代入原函數(shù)可得2+12+b=3,即b=12.故a=2e2,b=12. 8.解(1)因為f(x)=xea-x+bx, 所以f(x)=(1-x)ea-x+b. 依題設,f(2)=2e+2,f(2)=e-1,即2ea-2+2b=2e+2,-ea-2+b=e-1,解得a=2,b=e. (2)由(1)知f(x)=xe2-x+ex. 由f(x)=e2-x(1-x+

12、ex-1)及e2-x>0知,f(x)與1-x+ex-1同號. 令g(x)=1-x+ex-1,則g(x)=-1+ex-1. 所以,當x∈(-∞,1)時,g(x)<0,g(x)在區(qū)間(-∞,1)上單調遞減; 當x∈(1,+∞)時,g(x)>0,g(x)在區(qū)間(1,+∞)上單調遞增. 故g(1)=1是g(x)在區(qū)間(-∞,+∞)上的最小值, 從而g(x)>0,x∈(-∞,+∞). 綜上可知,f(x)>0,x∈(-∞,+∞). 故f(x)的單調遞增區(qū)間為(-∞,+∞). 9.解(1)由題意可知函數(shù)f(x)的定義域為R,f(x)=(1+x2)ex+(1+x2)(ex)=(1+x)2ex≥

13、0, 故函數(shù)f(x)的單調遞增區(qū)間為(-∞,+∞),無單調遞減區(qū)間. (2)∵a>1,∴f(0)=1-a<0,且f(a)=(1+a2)ea-a>1+a2-a>2a-a=a>0. ∴函數(shù)f(x)在區(qū)間(0,a)上存在零點. 又由(1)知函數(shù)f(x)在區(qū)間(-∞,+∞)內單調遞增, ∴函數(shù)f(x)在區(qū)間(-∞,+∞)內僅有一個零點. (3)由(1)及f(x)=0,得x=-1. 又f(-1)=2e-a,即P-1,2e-a, ∴kOP=2e-a-0-1-0=a-2e. 又f(m)=(1+m)2em,∴(1+m)2em=a-2e. 令g(m)=em-m-1,則g(m)=em-1,

14、∴由g(m)>0,得m>0,由g(m)<0,得m<0. ∴函數(shù)g(m)在區(qū)間(-∞,0)內單調遞減,在區(qū)間區(qū)間(0,+∞)內單調遞增. ∴g(m)min=g(0)=0,即g(m)≥0在R上恒成立, 即em≥m+1. ∴a-2e=(1+m)2em≥(1+m)2(1+m)=(1+m)3,即3a-2e≥1+m.故m≤3a-2e-1. 10.解(1)f(x)=x2+(1-a)x-a=(x+1)(x-a). 由f(x)=0,得x1=-1,x2=a>0. 當x變化時,f(x),f(x)的變化情況如下表: x (-∞,-1) -1 (-1,a) a (a,+∞) f(x) +

15、 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ 故函數(shù)f(x)的單調遞增區(qū)間是(-∞,-1),(a,+∞);單調遞減區(qū)間是(-1,a). (2)由(1)知f(x)在區(qū)間(-2,-1)內單調遞增,在區(qū)間(-1,0)內單調遞減,從而函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點當且僅當f(-2)<0,f(-1)>0,f(0)<0,解得0

16、∈[0,1],-1∈[t,t+3],f(x)在區(qū)間[t,-1]上單調遞增,在區(qū)間[-1,t+3]上單調遞減.因此f(x)在區(qū)間[t,t+3]上的最大值M(t)=f(-1)=-13,最小值m(t)為f(t)與f(t+3)中的較小者. 由f(t+3)-f(t)=3(t+1)(t+2)知,當t∈[-3,-2]時,f(t)≤f(t+3),則m(t)=f(t),所以g(t)=f(-1)-f(t).因為f(t)在區(qū)間[-3,-2]上單調遞增,所以f(t)≤f(-2)=-53.故g(t)在區(qū)間[-3,-2]上的最小值為g(-2)=-13--53=43. ②當t∈[-2,-1]時,t+3∈[1,2],且-

17、1,1∈[t,t+3]. 下面比較f(-1),f(1),f(t),f(t+3)的大小. 因為f(x)在區(qū)間[-2,-1],[1,2]上單調遞增, 所以f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2). 因為f(1)=f(-2)=-53,f(-1)=f(2)=-13, 從而M(t)=f(-1)=-13,m(t)=f(1)=-53.所以g(t)=M(t)-m(t)=43. 綜上,函數(shù)g(t)在區(qū)間[-3,-1]上的最小值為43. 思維提升訓練 11.A 解析利用單調性解抽象不等式時,關鍵要注意結論與已知條件的聯(lián)系,通過構造合適的函數(shù)來求解. 令g(x)=exf(

18、x),則g(x)=ex(f(x)+f(x))<0, 所以g(x)在R上單調遞減,所以g(2)>g(3),即e2f(2)>e3f(3).故選A. 12.(-∞,-2) 解析若g(x)=f(x)ex, 則g(x)=f(x)-f(x)ex>0, 所以g(x)在R上為增函數(shù). 又不等式em2f(m+1)

19、1)ln(x+1), 則h(x)=1+ln(x+1).令h(x)=0,得x=1e-1, 易得h(x)在區(qū)間-1,1e-1內單調遞減,在區(qū)間1e-1,+∞內單調遞增. 所以h(x)min=h1e-1=1-1e>0,∴f(x)<0. 故f(x)的單調遞減區(qū)間為(-1,0),(0,+∞). (2)當x>0時,f(x)>kx+1恒成立, 則k<(x+1)f(x). 令g(x)=(x+1)f(x)=(x+1)[1+ln(x+1)]x,則g(x)=(x-1)-ln(x+1)x2. 令φ(x)=1-x+ln(x+1)(x>0)?φ(x)=-xx+1<0,所以φ(x)在區(qū)間(0,+∞)內單調遞

20、減. 又φ(2)=ln3-1>0,φ(3)=2ln2-2<0, 則存在實數(shù)t∈(2,3),使φ(t)=0?t=1+ln(t+1). 所以g(x)在區(qū)間(0,t)內單調遞減,在區(qū)間(t,+∞)內單調遞增. 所以g(x)min=g(t)=(t+1)[1+ln(t+1)]t=t+1∈(3,4),故kmax=3. 14.解(1)因為f(1)=1-a2=0,所以a=2. 此時f(x)=lnx-x2+x,x>0. 則f(x)=1x-2x+1=-2x2+x+1x(x>0). 令f(x)<0,則2x2-x-1>0. 又x>0,所以x>1. 所以f(x)的單調遞減區(qū)間為(1,+∞). (2

21、)(方法一)令g(x)=f(x)-(ax-1)=lnx-12ax2+(1-a)x+1,則g(x)=1x-ax+(1-a)=-ax2+(1-a)x+1x. 當a≤0時,因為x>0,所以g(x)>0. 所以g(x)在區(qū)間(0,+∞)內是增函數(shù), 又g(1)=ln1-12a12+(1-a)+1=-32a+2>0,所以關于x的不等式f(x)≤ax-1不能恒成立. 當a>0時,g(x)=-ax2+(1-a)x+1x=-ax-1a(x+1)x(x>0), 令g(x)=0,得x=1a. 所以當x∈0,1a時,g(x)>0;當x∈1a,+∞時,g(x)<0, 因此函數(shù)g(x)在x∈0,1a內是增

22、函數(shù),在x∈1a,+∞內是減函數(shù). 故函數(shù)g(x)的最大值為g1a=ln1a-12a1a2+(1-a)1a+1=12a-lna. 令h(a)=12a-lna, 因為h(1)=12>0,h(2)=14-ln2<0,又h(a)在a∈(0,+∞)內是減函數(shù),且a為整數(shù), 所以當a≥2時,h(a)<0. 所以整數(shù)a的最小值為2. (方法二)由f(x)≤ax-1恒成立,得lnx-12ax2+x≤ax-1在(0,+∞)內恒成立, 問題等價于a≥lnx+x+112x2+x在區(qū)間(0,+∞)內恒成立. 令g(x)=lnx+x+112x2+x, 因為g(x)=(x+1)-12x-lnx12x2

23、+x2, 令g(x)=0,得-12x-lnx=0. 設h(x)=-12x-lnx, 因為h(x)=-12-1x<0,所以h(x)在區(qū)間(0,+∞)上單調遞減, 不妨設-12x-lnx=0的根為x0. 當x∈(0,x0)時,g(x)>0;當x∈(x0,+∞)時,g(x)<0,所以g(x)在x∈(0,x0)內是增函數(shù);在x∈(x0,+∞)內是減函數(shù).所以g(x)max=g(x0)=lnx0+x0+112x02+x0=1+12x0x01+12x0=1x0. 因為h12=ln2-14>0,h(1)=-12<0, 所以12

24、 所以a≥2,即整數(shù)a的最小值為2. (3)證明:當a=-2時,f(x)=lnx+x2+x,x>0. 由f(x1)+f(x2)+x1x2=0, 得lnx1+x12+x1+lnx2+x22+x2+x1x2=0, 從而(x1+x2)2+x1+x2=x1x2-ln(x1x2). 令t=x1x2(t>0),φ(t)=t-lnt,則φ(t)=t-1t. 可知,φ(t)在區(qū)間(0,1)內單調遞減,在區(qū)間(1,+∞)內單調遞增. 所以φ(t)≥φ(1)=1,所以(x1+x2)2+x1+x2≥1,因此x1+x2≥5-12或x1+x2≤-5-12(舍去). 15.解(1)由題意f(π)=π2-2

25、, 又f(x)=2x-2sinx,所以f(π)=2π, 因此曲線y=f(x)在點(π,f(π))處的切線方程為y-(π2-2)=2π(x-π),即y=2πx-π2-2. (2)由題意得h(x)=ex(cosx-sinx+2x-2)-a(x2+2cosx), 因為h(x)=ex(cosx-sinx+2x-2)+ex(-sinx-cosx+2)-a(2x-2sinx) =2ex(x-sinx)-2a(x-sinx) =2(ex-a)(x-sinx), 令m(x)=x-sinx,則m(x)=1-cosx≥0, 所以m(x)在R上單調遞增. 因為m(0)=0,所以當x>0時,m(x)

26、>0; 當x<0時,m(x)<0. ①當a≤0時,ex-a>0,當x<0時,h(x)<0,h(x)單調遞減,當x>0時,h(x)>0,h(x)單調遞增, 所以當x=0時h(x)取到極小值,極小值是h(0)=-2a-1; ②當a>0時,h(x)=2(ex-elna)(x-sinx),由h(x)=0得x1=lna,x2=0. (ⅰ)當00,h(x)單調遞增; 當x∈(lna,0)時,ex-elna>0,h(x)<0,h(x)單調遞減; 當x∈(0,+∞)時,ex-elna>0,h(x)>0,h(x)單調遞

27、增. 所以當x=lna時h(x)取到極大值. 極大值為h(lna)=-a[ln2a-2lna+sin(lna)+cos(lna)+2], 當x=0時h(x)取到極小值,極小值是h(0)=-2a-1; (ⅱ)當a=1時,lna=0,所以當x∈(-∞,+∞)時,h(x)≥0,函數(shù)h(x)在(-∞,+∞)上單調遞增,無極值; (ⅲ)當a>1時,lna>0,所以當x∈(-∞,0)時,ex-elna<0,h(x)>0,h(x)單調遞增; 當x∈(0,lna)時,ex-elna<0,h(x)<0,h(x)單調遞減; 當x∈(lna,+∞)時,ex-elna>0,h(x)>0,h(x)單調遞增

28、. 所以當x=0時h(x)取到極大值,極大值是h(0)=-2a-1; 當x=lna時h(x)取到極小值,極小值是h(lna)=-a[ln2a-2lna+sin(lna)+cos(lna)+2]. 綜上所述: 當a≤0時,h(x)在區(qū)間(-∞,0)上單調遞減,在區(qū)間(0,+∞)上單調遞增,函數(shù)h(x)有極小值,極小值是h(0)=-2a-1; 當01時,函數(shù)h(x)在區(qū)間(-∞,0)和(lna,+∞)上單調遞增,在區(qū)間(0,lna)上單調遞減,函數(shù)h(x)有極大值,也有極小值,極大值是h(0)=-2a-1,極小值是h(lna)=-a[ln2a-2lna+sin(lna)+cos(lna)+2].

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!