高考數(shù)學復習:第九章 :第二節(jié)導數(shù)的應用一突破熱點題型

上傳人:仙*** 文檔編號:43058315 上傳時間:2021-11-29 格式:DOC 頁數(shù):7 大小:219KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學復習:第九章 :第二節(jié)導數(shù)的應用一突破熱點題型_第1頁
第1頁 / 共7頁
高考數(shù)學復習:第九章 :第二節(jié)導數(shù)的應用一突破熱點題型_第2頁
第2頁 / 共7頁
高考數(shù)學復習:第九章 :第二節(jié)導數(shù)的應用一突破熱點題型_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學復習:第九章 :第二節(jié)導數(shù)的應用一突破熱點題型》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學復習:第九章 :第二節(jié)導數(shù)的應用一突破熱點題型(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 第二節(jié) 導數(shù)的應用(一) 考點一 利用導數(shù)研究函數(shù)的單調(diào)性   [例1] (2013重慶高考改編)設(shè)f(x) =a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6). (1)確定a的值; (2)求函數(shù)f(x)的單調(diào)區(qū)間. [自主解答] (1)因為f(x)=a(x-5)2+6ln x,故f′(x)=2a(x-5)+. 令x=1,得f(1)=16a,f′(1)=6-8a,所以曲線y=f(x)在點(1,f(1))處的切線方程為y-16a=(6

2、-8a)(x-1),由點(0,6)在切線上可得6-16a=8a-6,故a=. (2)由(1)知,f(x)=(x-5)2+6ln x(x>0),f′(x)=x-5+=. 令f′(x)=0,解得x1=2,x2=3.當03時,f′(x)>0,故f(x)在(0,2),(3,+∞)上為增函數(shù);當2

3、即k≥-2x2在(1,+∞)上恒成立,所以k≥(-2x2)max,又y=-2x2在(1,+∞)上單調(diào)遞減,所以(-2x2)max=-2,所以k≥-2,即k的取值范圍是[-2,+∞).     【方法規(guī)律】 利用導數(shù)研究函數(shù)的單調(diào)性應注意三點 (1)在區(qū)間內(nèi)f′(x)>0(f′(x)<0)是函數(shù)f(x)在此區(qū)間上為增(減)函數(shù)的充分不必要條件. (2)可導函數(shù)f(x)在(a,b)上是增(減)函數(shù)的充要條件是:?x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子區(qū)間內(nèi)都不恒為零. (3)由函數(shù)f(x)在(a,b)上的單調(diào)性,求參數(shù)范圍問題,可轉(zhuǎn)化為f

4、′(x)≥0(或f′(x) ≤0 )恒成立問題,要注意“=”是否可以取到. 已知函數(shù)f(x)=-2x2+ln x,其中a為常數(shù). (1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間; (2)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求a的取值范圍. 解:(1)若a=1,則f(x)=3x-2x2+ln x的定義域為(0,+∞),f′(x)=-4x+3==(x>0).當x∈(0,1),f′(x)>0時,函數(shù)f(x)=3x-2x2+ln x單調(diào)遞增.當x∈(1,+∞),f′(x)<0時,函數(shù)f(x)=3x-2x2+ln x單調(diào)遞減.故函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+

5、∞). (2)f′(x)=-4x+,若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),即在[1,2]上,f′(x)=-4x+≥0或f′(x)=-4x+≤0,即-4x+≥0或-4x+≤0在[1,2]上恒成立.即≥4x-或≤4x-.令h(x)=4x-,因為函數(shù)h(x)在[1,2]上單調(diào)遞增,所以≥h(2)或≤h(1),即≥或≤3,解得a<0或0

6、數(shù)極值的情況; (2)已知函數(shù)求極值; (3)已知極值求參數(shù). [例2] (1)(2012重慶高考)設(shè)函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(  ) A.函數(shù)f(x)有極大值f(2)和極小值f(1) B.函數(shù)f(x)有極大值f(-2)和極小值f(1)[來源:] C.函數(shù)f(x)有極大值f(2)和極小值f(-2) D.函數(shù)f(x)有極大值f(-2)和極小值f(2) (2)(2014鄭州模擬)若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于(  ) A

7、.2 B.3 C.6 D.9 (3)(2013福建高考)已知函數(shù)f(x)=x-aln x(a∈R). ①當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程; ②求函數(shù)f(x)的極值. [自主解答] (1)①當x<-2時,1-x>0.∵(1-x)f′(x)>0,∴f′(x)>0,即f(x)在(-∞,-2)上是增函數(shù). ②當-20.∵(1-x)f′(x)<0,∴f′(x)<0,即f(x)在(-2,1)上是減函數(shù). ③當10,∴f′(x)<0,即f(x)在(1,2)上是

8、減函數(shù). ④當x>2時,1-x<0.∵(1-x)f′(x)<0,∴f′(x)>0,即f(x)在(2,+∞)上是增函數(shù). 綜上:f(-2)為極大值,f(2)為極小值. (2)∵f′(x)=12x2-2ax-2b,f(x)在x=1處有極值,∴f′(1)=12-2a-2b=0,即a+b=6,又a>0,b>0,∴a+b≥2,∴ab≤9,當且僅當a=b=3時等號成立,∴ab的最大值為9. (3)函數(shù)f(x)的定義域為(0,+∞),f′(x)=1-. ①當a=2時,f(x)=x-2ln x,f′(x)=1-(x>0), 因而f(1)=1,f′(1)=-1,所以曲線y=f(x)在點A(1,f(1

9、))處的切線方程為y-1=-(x-1),即x+y-2=0. ②由f′(x)=1-=,x>0知:當a≤0時,f′(x)>0,函數(shù)f(x)為(0,+∞)上的增函數(shù),函數(shù)f(x)無極值;當a>0時,由f′(x)=0,解得x=a.又當x∈(0,a)時,f′(x)<0; 當x∈(a,+∞)時,f′(x)>0,從而函數(shù)f(x)在x=a處取得極小值,且極小值為f(a)=a-aln a,無極大值. 綜上,當a≤0時,函數(shù)f(x)無極值;當a>0時,函數(shù)f(x)在x=a處取得極小值a-aln a,無極大值. [答案] (1)D (2)D 函數(shù)極值問題的常見類型及解題策略 (1)知圖判斷函數(shù)極值的

10、情況.先找導數(shù)為0的點,再判斷導數(shù)為0的點的左、右兩側(cè)的導數(shù)符號. (2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側(cè)的符號―→下結(jié)論. (3)已知極值求參數(shù).若函數(shù)f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側(cè)的導數(shù)值符號相反. 1.(2013浙江高考)已知e為自然對數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex-1)(x-1)k(k=1,2),則(  ) A.當k=1時,f(x)在x=1處取到極小值 B.當k=1時,f(x)在x=1 處取到極大值 C.當k=2時,f(x)在x=1處取到極小值

11、 D.當k=2時,f(x)在x=1處取到極大值 解析:選C 當k=1時,f(x)=(ex-1)(x-1),0,1是函數(shù)f(x)的零點.當01時,f(x)=(ex-1)(x-1)>0,1不會是極值點.當k=2時,f(x)=(ex-1)(x-1)2,零點還是0,1,但是當01時,f(x)>0,由極值的概念,知選C. 2.已知函數(shù)f(x)=ax-1-ln x(a∈R). (1)討論函數(shù)f(x)在定義域內(nèi)的極值點的個數(shù); (2)若函數(shù)f(x)在x=1處取得極值,且對任意的x∈(0,+∞),f(x)≥bx-2恒成立,求實數(shù)

12、b的取值范圍. 解:(1)f′(x)=a-=,x>0,①當a≤0時,f′(x)<0在(0,+∞)上恒成立, ∴函數(shù)f(x)在(0,+∞)單調(diào)遞減,∴f(x)在(0,+∞)上沒有極值點; ②當a>0時,令f′(x)<0得00得x>, ∴f(x)在上單調(diào)遞減,在上單調(diào)遞增,即f(x)在x=處有極小值. 綜上所述,當a≤0時f(x)在(0,+∞)上沒有極值點;當a>0時,f(x)在(0,+∞)上有一個極值點. (2)∵函數(shù)f(x)在x=1處取得極值,∴由(1)可知a=1,∴f(x)=x-1-ln x. 又∵f(x)≥bx-2,∴x-1-ln x≥bx-2,即1+-

13、≥b.令g(x)=1+-,g′(x)=,∴當0e2時,g′(x)>0,即g(x)在(e2,+∞)上為增函數(shù),∴g(x)在x=e2處取得最小值,∴g(x)min=g(e2)=1-,即b≤1-.故實數(shù)b的取值范圍為. 考點三 利用導數(shù)研究函數(shù)的最值問題   [例3] (2013廣東高考)設(shè)函數(shù)f(x)=(x-1)ex-kx2(k∈R). (1)當k=1時,求函數(shù)f(x)的單調(diào)區(qū)間; (2)當k∈時,求函數(shù)f(x)在[0,k]上的最大值M. [自主解答] (1)當k=1時,f(x)=(x-1)ex-x2,f′(x

14、)=ex+(x-1)ex-2x=xex-2x=x(ex-2).令f′(x)=0,得x1=0,x2=ln 2. 當x變化時,f′(x),f(x)的變化如下表: x (-∞,0) 0 (0,ln 2) ln 2 (ln 2,+∞) f′(x) + 0 -[來源:] 0[來源:] + f(x) ↗ 極大值 ↘ 極小值 ↗ 由表可知,函數(shù)f(x)的遞減區(qū)間為(0,ln 2),遞增區(qū)間為(-∞,0),(ln 2,+∞). (2)f′(x)=ex+(x-1)ex-2kx=xex-2kx=x(ex-2k),令f′(x)=0,得x1=0,x2=ln(2k),

15、令g(k)=ln(2k)-k,則g′(k)=-1=≥0,所以g(k)在上遞增,所以g(k)≤ln 2-1=ln 2-ln e<0,從而ln(2k)0;所以M=max{f(0),f(k)}=max{-1,(k-1)ek-k3}.令h(k)=(k-1)ek-k3+1,則h′(k)=k(ek-3k), 令φ(k)=ek-3k,則φ′(k)=ek-3≤e-3<0,所以φ(k)在上遞減,而φφ(1)=(e-3)<0,所以存在x0∈使得φ(x0)=0,且當k∈時,φ(k)

16、>0,當k∈(x0,1)時,φ(k)<0,所以φ(k)在上單調(diào)遞增,在(x0,1)上單調(diào)遞減. 因為h()=- +>0,h(1)=0,所以h(k)≥0在上恒成立,當且僅當k=1時等號成立.綜上,函數(shù)f(x)在[0,k]上的最大值M=(k-1)ek-k3. 【方法規(guī)律】 求函數(shù)f(x)在[a,b]上最值的方法 (1)若函數(shù)f(x)在[a,b]上單調(diào)遞增或遞減,f(a)與f(b)一個為最大值,一個為最小值. (2)若函數(shù)f(x)在區(qū)間(a,b)內(nèi)有極值,先求出函數(shù)f(x)在區(qū)間(a,b)上的極值,與f(a)、f(b)比較,其中最大的一個是最大值,最小的一個是最小值. (3)函數(shù)f(

17、x)在區(qū)間(a,b)上有唯一一個極值點時,這個極值點就是最大(或最小)值點. 已知a∈R,函數(shù)f(x)=2x3-3(a+1)x2+6ax. (1)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程; (2)若|a|>1,求f(x)在閉區(qū)間[0,2|a|]上的最小值. 解:(1)當a=1時,f′(x)=6x2-12x+6,所以f′(2)=6.又因為f(2)=4,所以切線方程為y=6x-8.[來源:] (2)記g(a)為f(x)在閉區(qū)間[0,2|a|]上的最小值.f′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a). 令f′(x)=0,得x1=1,x2=a

18、. 當a>1時, x 0 (0,1) 1 (1,a) a (a,2a) 2a f′(x) + 0 - 0 + f(x) 0 ↗ 極大值 3a-1 ↘ 極小值 a2(3-a) ↗ 4a3[來源:] 比較f(0)=0和f(a)=a2(3-a)的大小可得g(a)= 當a<-1時, x 0 (0,1) 1 (1,-2a) -2a f′(x) - 0 + f(x) 0 ↘ 極小值 3a-1 ↗ -28a3-24a2 得g(a)=3a-1.綜上所述,f(x)在閉區(qū)間[0,2|a|]上的

19、最小值為g(a)= ————————————[課堂歸納——通法領(lǐng)悟]———————————————— 1個流程——解決函數(shù)極值問題的一般流程   求極值 用極值 2個關(guān)系——導數(shù)與單調(diào)性、極值的關(guān)系  (1)f′(x)>0在(a,b)上成立,是f(x)在(a,b)上單調(diào)遞增的充分不必要條件. (2)對于可導函數(shù)f(x),f′(x0)=0是函數(shù)f(x)在x=x0處有極值的必要不充分條件. 3個注意點——利用導數(shù)求極值應注意三點  (1)求單調(diào)區(qū)間時應先求函數(shù)的定義域,遵循定義域優(yōu)先的原則; (2)f′(x0)=0時,x0不一定是極值點; (3)求最值時,應注意極值點和所給區(qū)間的關(guān)系,關(guān)系不確定時應分類討論.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!