20、e]上單調(diào)遞減,此時(shí)f(x)min=f(e)=a+e2.
綜上所述,當(dāng)a≥-2時(shí),f(x)min=1,相應(yīng)的x=1;當(dāng)-2e20,
因而a≥x2-2xx-lnx,x∈[1,e],令g(x)=x2-2xx-lnx(x∈[1,e]),
則g(x)=(x-1)(x+2-2lnx)(x-lnx)2,
21、
當(dāng)x∈[1,e]時(shí),x-1≥0,lnx≤1,x+2-2lnx>0,
從而g(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)),
所以g(x)在區(qū)間[1,e]上是增函數(shù),
故g(x)min=g(1)=-1,
所以實(shí)數(shù)a的取值范圍是[-1,+∞).
17.(1)解f(x)=-2αsin2x-(α-1)sinx.
(2)解(分類(lèi)討論)當(dāng)α≥1時(shí),
|f(x)|=|αcos2x+(α-1)(cosx+1)|≤α+2(α-1)=3α-2=f(0).
因此A=3α-2.
當(dāng)0<α<1時(shí),將f(x)變形為
f(x)=2αcos2x+(α-1)cosx-1.
令g(t)=2αt2+(α-1)t-1,則A
22、是|g(t)|在[-1,1]上的最大值,
g(-1)=α,g(1)=3α-2,且當(dāng)t=1-α4α?xí)r,g(t)取得極小值,極小值為g1-α4α=-(α-1)28α-1=-α2+6α+18α.
令-1<1-α4α<1,解得α<-13(舍去),α>15.
當(dāng)0<α≤15時(shí),g(t)在區(qū)間(-1,1)內(nèi)無(wú)極值點(diǎn),
|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,
所以A=2-3α.
當(dāng)15<α<1時(shí),由g(-1)-g(1)=2(1-α)>0,
知g(-1)>g(1)>g1-α4α.
又g1-α4α-|g(-1)|=(1-α)(1+7α)8α>0,
所以A=g1-α4α=α2+6α+18α.
綜上,A=2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.
(3)證明由(1)得|f(x)|=|-2αsin2x-(α-1)sinx|≤2α+|α-1|.
當(dāng)0<α≤15時(shí),|f(x)|≤1+α≤2-4α<2(2-3α)=2A.
當(dāng)15<α<1時(shí),A=α8+18α+34≥1,
所以|f(x)|≤1+α<2A.
當(dāng)α≥1時(shí),|f(x)|≤3α-1≤6α-4=2A.
所以|f(x)|≤2A.