《(參考)《函數(shù)的極值與導(dǎo)數(shù)》教學(xué)設(shè)計(jì)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(參考)《函數(shù)的極值與導(dǎo)數(shù)》教學(xué)設(shè)計(jì)(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、3.3.2 函數(shù)的極值與導(dǎo)數(shù) 教學(xué)設(shè)計(jì)
一、教學(xué)目標(biāo)
1 知識(shí)與技能
〈1〉結(jié)合函數(shù)圖象,了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件
〈2〉理解函數(shù)極值的概念,會(huì)用導(dǎo)數(shù)求函數(shù)的極大值與極小值
2 過(guò)程與方法
結(jié)合實(shí)例,借助函數(shù)圖形直觀感知,并探索函數(shù)的極值與導(dǎo)數(shù)的關(guān)系。
3 情感與價(jià)值
感受導(dǎo)數(shù)在研究函數(shù)性質(zhì)中一般性和有效性,通過(guò)學(xué)習(xí)讓學(xué)生體會(huì)極值是函數(shù)的局部性質(zhì),增強(qiáng)學(xué)生數(shù)形結(jié)合的思維意識(shí)。
二、重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的極值
難點(diǎn):函數(shù)在某點(diǎn)取得極值的必要條件與充分條件
三、教學(xué)基本流程
回憶函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,與已有知識(shí)的了解
提
2、出問(wèn)題,激發(fā)求知欲
組織學(xué)生自主探索,獲得函數(shù)的極值定義
通過(guò)例題和練習(xí),深化提高對(duì)函數(shù)的極值定義的理解
四、教學(xué)過(guò)程
〈一〉、創(chuàng)設(shè)情景,導(dǎo)入新課
1、通過(guò)上節(jié)課的學(xué)習(xí),導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系是什么?
(提問(wèn)學(xué)生回答)
2.觀察圖1.3.8 表示高臺(tái)跳水運(yùn)動(dòng)員的高度h隨時(shí)間t變化的函數(shù)=-4.9t2+6.5t+10的圖象,回答以下問(wèn)題
(1)當(dāng)t=a時(shí),高臺(tái)跳水運(yùn)動(dòng)員距水面的高度最大,那么函數(shù)在t=a處的導(dǎo)數(shù)是多少呢?
(2)在點(diǎn)t=a附近的圖象有什么特點(diǎn)?
(3)點(diǎn)t=a附近的導(dǎo)數(shù)符號(hào)有什么變化規(guī)律?
共同歸納: 函數(shù)h(t
3、)在a點(diǎn)處h/(a)=0,在t=a的附近,當(dāng)t<a時(shí),函數(shù)單調(diào)遞增, >0;當(dāng)t>a時(shí),函數(shù)單調(diào)遞減, <0,即當(dāng)t在a的附近從小到大經(jīng)過(guò)a時(shí), 先正后負(fù),且連續(xù)變化,于是h/(a)=0.
3、對(duì)于這一事例是這樣,對(duì)其他的連續(xù)函數(shù)是不是也有這種性質(zhì)呢?
<二>、探索研討
1、觀察1.3.9圖所表示的y=f(x)的圖象,回答以下問(wèn)題:
(1)函數(shù)y=f(x)在a.b點(diǎn)的函數(shù)值與這些點(diǎn)附近的函數(shù)值有什么關(guān)系?
(2) 函數(shù)y=f(x)在a.b.點(diǎn)的導(dǎo)數(shù)值是多少?
(3)在a.b點(diǎn)附近, y=f(x)的導(dǎo)數(shù)的符號(hào)分別是什么,并且有什么關(guān)系呢?
2、極值的定義:
我們把點(diǎn)a叫做
4、函數(shù)y=f(x)的極小值點(diǎn),f(a)叫做函數(shù)y=f(x)的極小值;
點(diǎn)b叫做函數(shù)y=f(x)的極大值點(diǎn),f(a)叫做函數(shù)y=f(x)的極大值。
極大值點(diǎn)與極小值點(diǎn)稱為極值點(diǎn), 極大值與極小值稱為極值.
3、通過(guò)以上探索,你能歸納出可導(dǎo)函數(shù)在某點(diǎn)x0取得極值的充要條件嗎?
充要條件:f(x0)=0且點(diǎn)x0的左右附近的導(dǎo)數(shù)值符號(hào)要相反
4、引導(dǎo)學(xué)生觀察圖1.3.11,回答以下問(wèn)題:
(1)找出圖中的極點(diǎn),并說(shuō)明哪些點(diǎn)為極大值點(diǎn),哪些點(diǎn)為極小值點(diǎn)?
(2)極大值一定大于極小值嗎?
5、隨堂練習(xí):
1 如圖是函數(shù)y=f(x)的函數(shù),試找出函數(shù)y=f(x)的極值點(diǎn),并指出哪些是極大
5、值點(diǎn),哪些是極小值點(diǎn).如果把函數(shù)圖象改為導(dǎo)函數(shù)y=的圖象?
<三>、講解例題
例4 求函數(shù)的極值
教師分析:①求f/(x),解出f/(x)=0,找函數(shù)極點(diǎn); ②由函數(shù)單調(diào)性確定在極點(diǎn)x0附近f/(x)的符號(hào),從而確定哪一點(diǎn)是極大值點(diǎn),哪一點(diǎn)為極小值點(diǎn),從而求出函數(shù)的極值.
學(xué)生動(dòng)手做,教師引導(dǎo)
解:∵∴=x2-4=(x-2)(x+2)
令=0,解得x=2,或x=-2.
下面分兩種情況討論:
(1) 當(dāng)>0,即x>2,或x<-2時(shí);
(2) 當(dāng)<0,即-2<x<2時(shí).
當(dāng)x變化時(shí), ,f(x)的變化情況如下表:
x
(-∞,-2)
-2
(-2,2)
2
(2,+
6、∞)
+
0
_
0
+
f(x)
單調(diào)遞增
單調(diào)遞減
單調(diào)遞增
因此,當(dāng)x=-2時(shí),f(x)有極大值,且極大值為f(-2)= ;當(dāng)x=2時(shí),f(x)有極
小值,且極小值為f(2)=
函數(shù)的圖象如:
歸納:求函數(shù)y=f(x)極值的方法是:
1求,解方程=0,當(dāng)=0時(shí):
(1) 如果在x0附近的左邊>0,右邊<0,那么f(x0)是極大值.
(2) 如果在x0附近的左邊<0,右邊>0,那么f(x0)是極小值
<四>、課堂練習(xí)
1、求函數(shù)f(x)=3x-x3的極值
2、思考:已知函數(shù)f(x)=ax3+bx2-2x在x=-2,x=1處取得極值,
求
7、函數(shù)f(x)的解析式及單調(diào)區(qū)間。
<五>、課后思考題:
1、 若函數(shù)f(x)=x3-3bx+3b在(0,1)內(nèi)有極小值,求實(shí)數(shù)b的范圍。
2、 已知f(x)=x3+ax2+(a+b)x+1有極大值和極小值,求實(shí)數(shù)a的范圍。
<六>、課堂小結(jié):
1、 函數(shù)極值的定義
2、 函數(shù)極值求解步驟
3、 一個(gè)點(diǎn)為函數(shù)的極值點(diǎn)的充要條件。
教學(xué)反思:
本節(jié)的教學(xué)內(nèi)容是導(dǎo)數(shù)的極值,有了上節(jié)課導(dǎo)數(shù)的單調(diào)性作鋪墊,借助函數(shù)圖形的直觀性探索歸納出導(dǎo)數(shù)的極值定義,利用定義求函數(shù)的極值.教學(xué)反饋中主要是書寫格式存在著問(wèn)題.為了統(tǒng)一要求主張用列表的方式表示,剛開始學(xué)生都不愿接受這種格式,但隨著
8、幾道例題與練習(xí)題的展示,學(xué)生體會(huì)到列表方式的簡(jiǎn)便,同時(shí)為能夠快速判斷導(dǎo)數(shù)的正負(fù),我要求學(xué)生盡量把導(dǎo)數(shù)因式分解.本節(jié)課的難點(diǎn)是函數(shù)在某點(diǎn)取得極值的必要條件與充分條件,為了說(shuō)明這一點(diǎn)多舉幾個(gè)例題是很有必要的.在解答過(guò)程中學(xué)生還暴露出對(duì)復(fù)雜函數(shù)的求導(dǎo)的準(zhǔn)確率比較底,以及求函數(shù)的極值的過(guò)程板書仍不規(guī)范,看樣子這些方面還要不斷加強(qiáng)訓(xùn)練.
研討評(píng)議:
教學(xué)內(nèi)容整體設(shè)計(jì)合理,重點(diǎn)突出,難點(diǎn)突破,充分體現(xiàn)教師為主導(dǎo),學(xué)生為主體的雙主體課堂地位,充分調(diào)動(dòng)學(xué)生的積極性,教師合理清晰的引導(dǎo)思路,使學(xué)生的數(shù)學(xué)思維得到培養(yǎng)和提高,教學(xué)內(nèi)容容量與難度適中,符合學(xué)情,并關(guān)注學(xué)生的個(gè)體差異,使不同程度的學(xué)生都得到不同效果的收獲.
友情提示:部分文檔來(lái)自網(wǎng)絡(luò)整理,供您參考!文檔可復(fù)制、編制,期待您的好評(píng)與關(guān)注!
5 / 5