云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 8課件新人教A必修5

上傳人:沈*** 文檔編號:48503444 上傳時間:2022-01-09 格式:PPT 頁數(shù):16 大?。?98.50KB
收藏 版權(quán)申訴 舉報 下載
云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 8課件新人教A必修5_第1頁
第1頁 / 共16頁
云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 8課件新人教A必修5_第2頁
第2頁 / 共16頁
云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 8課件新人教A必修5_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 8課件新人教A必修5》由會員分享,可在線閱讀,更多相關(guān)《云南省昭通市實(shí)驗(yàn)中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項(xiàng)和 8課件新人教A必修5(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 數(shù)學(xué)小故事:數(shù)學(xué)小故事: 國際象棋起源于印度。國際象棋起源于印度。棋盤上共有棋盤上共有8 8行行8 8列構(gòu)成列構(gòu)成6464個格子。傳說個格子。傳說國王要獎賞國際象棋的發(fā)明者,問他有國王要獎賞國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:什么要求,發(fā)明者說:“請在棋盤的第請在棋盤的第1 1個格子里放上個格子里放上1 1顆麥粒,在棋盤的第顆麥粒,在棋盤的第2 2個格子里放上個格子里放上2 2顆麥粒,在棋盤的第顆麥粒,在棋盤的第3 3個個格子里放上格子里放上4 4顆麥粒,在棋盤的第顆麥粒,在棋盤的第4 4個格個格子里放上子里放上8 8顆麥粒,以此類推,每個格顆麥粒,以此類推,每個格子里放的麥粒數(shù)都是

2、前一個格子里放的子里放的麥粒數(shù)都是前一個格子里放的麥粒數(shù)的麥粒數(shù)的2 2倍,直到第倍,直到第6464個格子。請給個格子。請給我足夠的糧食來實(shí)現(xiàn)上述要求。我足夠的糧食來實(shí)現(xiàn)上述要求?!蹦阏J(rèn)你認(rèn)為國王有能力滿足發(fā)明者的上述要求嗎?為國王有能力滿足發(fā)明者的上述要求嗎?國際象棋棋盤國際象棋棋盤而所要求的而所要求的“64個格子所放的麥粒數(shù)總和個格子所放的麥粒數(shù)總和”就是求這個等比數(shù)列前就是求這個等比數(shù)列前64項(xiàng)的和項(xiàng)的和.問題:求問題:求2363641 2 222?S 如果將棋盤各格子所放的麥粒數(shù)看成一個如果將棋盤各格子所放的麥粒數(shù)看成一個數(shù)列,我們可以得到一個等比數(shù)列,它的首數(shù)列,我們可以得到一個等比

3、數(shù)列,它的首項(xiàng)是項(xiàng)是1,公比是,公比是2.二、新課講解:二、新課講解:2363641 2222S 式子兩邊都乘以式子兩邊都乘以 公比公比 2得得236364642 2 22 2 2S 由得由得646421S 而而64196421 18,446,744,073,709,551,615 1.84 10S 假定千粒麥子的質(zhì)量為假定千粒麥子的質(zhì)量為40克,那么麥粒的總質(zhì)量克,那么麥粒的總質(zhì)量超過了超過了7000億噸,是全世界億噸,是全世界1000多年的小麥總產(chǎn)量多年的小麥總產(chǎn)量.因此,國王不可能實(shí)現(xiàn)他的諾言因此,國王不可能實(shí)現(xiàn)他的諾言.1nnaan對于等比數(shù)列首項(xiàng),公比q,前 項(xiàng)和S123nnSaaa

4、a211111 nnSaa qa qa q根據(jù)等比數(shù)列的通項(xiàng)公式,上式可寫成根據(jù)等比數(shù)列的通項(xiàng)公式,上式可寫成 211111nnnqSa qa qa qa q 由由-得得 1nnqq (1- )S等式兩邊能否同除等式兩邊能否同除以(以(1-q)?)?11,nqSna(1)當(dāng)時11,nnaqqSq(1-)(2)當(dāng)時1-需要分類討論!需要分類討論!11,nqSna(1)當(dāng)時11 ,nnaqqSq(1- )(2)當(dāng)時1-因?yàn)橐驗(yàn)?1nnaa q1nnaa qSq-或1- 1, aq n若 已 知則 選 用 公 式; 1,naq a若 已 知則 選 用 公 式 .三、等比數(shù)列前三、等比數(shù)列前N和公式的

5、應(yīng)用和公式的應(yīng)用例題例題1、求下列等比數(shù)列前、求下列等比數(shù)列前8項(xiàng)的和:項(xiàng)的和: 111(1),;248 111(1),822aqn解: 因?yàn)樗援?dāng)時,818(1)1aqSq8111 ( )25522.125612191(2)27,0.243aaq191(2)27,0.243aaq例題例題1、求下列等比數(shù)列前、求下列等比數(shù)列前8項(xiàng)的和:項(xiàng)的和: 8191127, 27.243243aaq解:(2)由可得.1又 由 q0,可 得 q=-3于 是 當(dāng) n=8時 ,818(1)1aqSq8127 1 ()16403.1811 ()3 1819811aa qaaSqq或1271640243.1811

6、()3 38513.3q即小結(jié):解決問題的關(guān)鍵是根據(jù)題目中的小結(jié):解決問題的關(guān)鍵是根據(jù)題目中的條件求出條件求出 的值,再選擇好公式的值,再選擇好公式.1, , a q n若已知則選用公式; 1, ,na q a若已知則選用公式 .1aq和練習(xí)練習(xí)1、根據(jù)下列各題中的條件,求相應(yīng)的等比數(shù)列的前N項(xiàng)和.11(1),1,100;2aqn1(2)3,2,6;aqn113(3)2,.34naqa .18921)21 (366S1001110010050.2Sa1312()2143 .11161 ()3nnaa qSq 例題例題2、在等比數(shù)列中已知在等比數(shù)列中已知1442 , 16 , .aaqS求與1,

7、 , ,nna aq n S分析:題中已知分析:題中已知 五個量中的三個,求其余五個量中的三個,求其余的兩個,是的兩個,是“知三求二型知三求二型”的問題的問題.可以根據(jù)相關(guān)公式列可以根據(jù)相關(guān)公式列出兩個方程式,根據(jù)方程思想解出未知量出兩個方程式,根據(jù)方程思想解出未知量.1111nnnaa qaa qqn將它們代入公式和S341 62,21 61qqSq得 到142,16aa解 : 因 為4解這個關(guān)于q與S的方程組,得到42,3 0qS練習(xí)練習(xí)2、(1)在等比數(shù)列中已知)在等比數(shù)列中已知1332 , 26 , .aSaq求與 (2)在等比數(shù)列中已知)在等比數(shù)列中已知5151 , 3 , .2qS

8、aa求 與 15151545514511482313111.23131( )2aaaa qaSqaaaqaa(1)提示:由練習(xí)練習(xí)2、1332 , 26 , .aSaq求與 (2)在等比數(shù)列中已知)在等比數(shù)列中已知 331322331(1)2(1)26 112 aqqSqqaqaaq(1)提示:由(2)2 120qq由(1)化簡得4 3.qq 解得,或232342 ( 4)32.32 318.qaqa 當(dāng)時,當(dāng)時,記得要分類記得要分類討論!討論!考試報:第考試報:第5期期2.5隨堂練習(xí)二第隨堂練習(xí)二第5、6題題練習(xí):已知等比數(shù)列練習(xí):已知等比數(shù)列 的前的前 n項(xiàng)和為項(xiàng)和為 ,且,且 成等差數(shù)列

9、,則數(shù)列成等差數(shù)列,則數(shù)列 的公比為的公比為 nanS123,2,3SSS3422,5,aSS nanS例例3:已知等比數(shù)列:已知等比數(shù)列 的前的前 n項(xiàng)和為項(xiàng)和為 且公比且公比q1, 求數(shù)列求數(shù)列 的通項(xiàng)公式的通項(xiàng)公式 na an練習(xí):已知等比數(shù)列練習(xí):已知等比數(shù)列 的前的前 n項(xiàng)和為項(xiàng)和為 數(shù),則數(shù),則k+b= na3(, ,nnSkb nNk b 是常四、小結(jié):四、小結(jié): 2.2.等比數(shù)列前等比數(shù)列前 項(xiàng)和公式推導(dǎo)中蘊(yùn)含的項(xiàng)和公式推導(dǎo)中蘊(yùn)含的 思想方法:錯位相減法思想方法:錯位相減法. .n).1( ,11)1(),1( ,111qqqaaqqaqnaSnnn或1.1.等比數(shù)列求和公式等比數(shù)列求和公式以及公式的應(yīng)用;以及公式的應(yīng)用;3.利用方程的思想,解決利用方程的思想,解決“知三求二型知三求二型”的問題的問題.五、作業(yè)布置五、作業(yè)布置1、根據(jù)下列各題中的條件,求相應(yīng)的、根據(jù)下列各題中的條件,求相應(yīng)的等比數(shù)列的前等比數(shù)列的前n項(xiàng)和項(xiàng)和.nS.111(1)8,;22naqa 1(2)2.4,1.5,5;aqn 2、課本、課本p69 習(xí)題習(xí)題2.5 A組組 1

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!