《《一元二次方程根與系數(shù)的關(guān)系》教學(xué)設(shè)計(jì)與反思(共5頁)》由會員分享,可在線閱讀,更多相關(guān)《《一元二次方程根與系數(shù)的關(guān)系》教學(xué)設(shè)計(jì)與反思(共5頁)(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-----傾情為你奉上
《一元二次方程根與系數(shù)的關(guān)系》教學(xué)設(shè)計(jì)與反思
西達(dá)中學(xué) 申艷平
教材分析:
一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。
學(xué)情分析:
1.學(xué)生已學(xué)習(xí)用求根公式法解一元二次方程。
2.本課的教學(xué)對象是九年級學(xué)生,學(xué)生對事物的認(rèn)識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學(xué)初始,出示一些學(xué)生所熟悉和感興趣的東西,結(jié)合一元二次方程求根
2、公式使他們在現(xiàn)代化的教學(xué)模式和傳統(tǒng)的教學(xué)模式相結(jié)合的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系。
教學(xué)目標(biāo):
1、 知識目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
2、能力目標(biāo):通過韋達(dá)定理的教學(xué)過程,使學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動過程,發(fā)展推理能力,能有條理地清晰地闡述自己的觀點(diǎn),進(jìn)一步培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新精神。
3、情感目標(biāo):通過情境教學(xué)過程,激發(fā)學(xué)生的求知欲望,培養(yǎng)學(xué)生積極學(xué)習(xí)數(shù)學(xué)的態(tài)度。體驗(yàn)數(shù)學(xué)活動中充滿著探索與創(chuàng)造,體驗(yàn)數(shù)學(xué)活
3、動中的成功感,建立自信心。
教學(xué)重難點(diǎn):
1、重點(diǎn):一元二次方程根與系數(shù)的關(guān)系。
2、難點(diǎn):讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
教學(xué)過程
環(huán)節(jié)
教師活動
預(yù)設(shè)學(xué)生行為
設(shè)計(jì)意圖
問題引探
解下列方程:
2x2+5x+3=0???????3x2-2x-8=0
并根據(jù)問題2和以上的求解填寫下表
請觀察上表,你能發(fā)現(xiàn)兩根之和、兩根之積與方程的系數(shù)之間有什么關(guān)系嗎?
問題4.請根據(jù)以上的觀察發(fā)現(xiàn)進(jìn)一步猜想:方程a
4、x2+bx+c=0(a≠0)的根x1,x2與a、b、c之間的關(guān)系:____________。
問題5.你能證明上面的猜想嗎?請證明,并用文字語言敘述說明。
分小組討論以上的問題,并作出推理證明。
?若方程ax2+bx+c=0(a≠0)的兩根為
x1= ,x2= 。
則
x1+x2= + = ;
x1 x2= ·
?
?此得出一元二次方程的根與系數(shù)的關(guān)系;還可以讓學(xué)生用自己的語言表
5、述這種關(guān)系,來加深理解和記憶。
這個關(guān)系是一個法國數(shù)學(xué)家韋達(dá)發(fā)現(xiàn)的,所以也稱之為韋達(dá)定理。
?
?
?
探索發(fā)現(xiàn)
問題6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用嗎?(引導(dǎo)學(xué)生反思性小結(jié))
①二次項(xiàng)系數(shù)a是否為零,決定著方程是否為二次方程;
②當(dāng)a≠0時,b=0,a、c異號,方程兩根互為相反數(shù);
③當(dāng)a≠0時,△=b2<-4ac>可判定根的情況;
④當(dāng)a≠0,b2<-4ac>≥0時,x1+x2= ,x1x2= 。 ?
⑤當(dāng)a≠0,c=0時,方程必有一根為0。
學(xué)生交流探討
本設(shè)計(jì)采用“實(shí)踐——觀察——發(fā)現(xiàn)——猜想——證明
6、”的過程,使學(xué)生既動手又動腦,且又動口,教師引導(dǎo)啟發(fā),避免注入式地講授一元二次方程根與系數(shù)的關(guān)系,體現(xiàn)學(xué)生的主體學(xué)習(xí)特性,培養(yǎng)了學(xué)生的創(chuàng)新意識和創(chuàng)新精神。
嘗試發(fā)展
根據(jù)根與系數(shù)的關(guān)系寫出下列方程的兩根之和與兩根之積(方程兩根為x1,x2、k是常數(shù))
1)2x2-3x+1=0 x1+x2= ________ x1x2= _________
(2)3x2+5x=0 x1+x2= ________ x1x2= __________
(3)5x2+x-2=0 x1+x2= _____
7、____ x1x2= __________
(4)5x2+kx-6=0 x1+x2= _________ x1x2= __________
此試一試、鞏固知識
拓展創(chuàng)新
利用根與系數(shù)的關(guān)系,求一元二次方程2x2-3x-1=0的兩個根的(1)平方和,(2)倒數(shù)和。
討論:解上面問題的思路是什么?
x12+ x22=( x1+x2)2-2 x1x2;???
將平方和、倒數(shù)和轉(zhuǎn)化為兩根和與積的代數(shù)式
師生共同歸納小結(jié)
本課主要研究了什么?
1、方程的根是由系數(shù)決定的。2、a≠0時,方程ax2+bx+c=0是
8、一元二次方程。3、當(dāng)a≠0,b2-4ac≥0時,x1+x2= ,x1x2= 。4、b2-4ac的值可判定根的情況。5、方程根與系數(shù)關(guān)系的有關(guān)應(yīng)用。
回顧總結(jié)
板書設(shè)計(jì):
一元二次方程根與系數(shù)的關(guān)系
如果ax2+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2= ,x1x2= 。
問題6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用嗎?
①二次項(xiàng)系數(shù)a是否為零,決定著方程是否為二次方程;
②當(dāng)a≠0時,b=0,a、c異號,方程兩根互為相反數(shù);
③當(dāng)a≠0時,△=b2<-4ac>可判定根的情況;
④當(dāng)a≠0,b2
9、<-4ac>≥0時,x1+x2= ,x1x2= 。
⑤當(dāng)a≠0,c=0時,方程必有一根為0。
學(xué)生學(xué)習(xí)活動評價(jià)設(shè)計(jì):
本節(jié)課充分讓學(xué)生分析、觀察、提高了學(xué)生的歸納能力及推理論證的能力。
教學(xué)反思:
1.一元二次方程根與系數(shù)的關(guān)系的推導(dǎo)是在求根公式的基礎(chǔ)上進(jìn)行。它深化了兩根的和與積同系數(shù)之間的關(guān)系,是我們今后繼續(xù)研究一元二次方程根的情況的主要工具,必須熟記,為進(jìn)一步使用打下基礎(chǔ)。
2.以一元二次方程根與系數(shù)的關(guān)系的探索與推導(dǎo),向?qū)W生展示認(rèn)識事物的一般規(guī)律,提倡積極思維,勇于探索的精神,借此鍛煉學(xué)生分析、觀察、歸納的能力及推理論證的能力
3.一元二次方程的根與系數(shù)的關(guān)系,在中考中多以填空,選擇,解答題的形式出現(xiàn),考查的頻率較高,也常與幾何、二次函數(shù)等問題結(jié)合考查,是考試的熱點(diǎn),它是方程理論的重要組成部分。
4.使學(xué)生體會解題方法的多樣性,開闊解題思路,優(yōu)化解題方法,增強(qiáng)擇優(yōu)能力。力求讓學(xué)生在自主探索和合作交流的過程中進(jìn)行學(xué)習(xí),獲得數(shù)學(xué)活動經(jīng)驗(yàn),教師應(yīng)注意引導(dǎo)。
專心---專注---專業(yè)