江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.2共線向量與共面向量

上傳人:沈*** 文檔編號:51283747 上傳時(shí)間:2022-01-25 格式:PPT 頁數(shù):22 大?。?37KB
收藏 版權(quán)申訴 舉報(bào) 下載
江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.2共線向量與共面向量_第1頁
第1頁 / 共22頁
江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.2共線向量與共面向量_第2頁
第2頁 / 共22頁
江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.2共線向量與共面向量_第3頁
第3頁 / 共22頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.2共線向量與共面向量》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.2共線向量與共面向量(22頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、共線向量與共面向量共線向量與共面向量江蘇如東馬塘中學(xué)江蘇如東馬塘中學(xué) 張偉鋒張偉鋒一、共線向量一、共線向量: :零向量與任意向量共線零向量與任意向量共線. . 1.1.共線向量共線向量: :如果表示空間向量的如果表示空間向量的有向線段所在直線互相平行或重合有向線段所在直線互相平行或重合, ,則這些則這些向量叫做共線向量向量叫做共線向量( (或平行向量或平行向量),),記作記作ba/ 2. 2.共線向量定理共線向量定理: :對空間任意兩個(gè)對空間任意兩個(gè)向量向量 的充要條件是存在實(shí)的充要條件是存在實(shí)數(shù)使數(shù)使baobba/),(,ba 推論推論: :如果如果 為經(jīng)過已知點(diǎn)為經(jīng)過已知點(diǎn)A A且平行且平

2、行已知非零向量已知非零向量 的直線的直線, ,那么對任一點(diǎn)那么對任一點(diǎn)O,O,點(diǎn)點(diǎn)P P在直線在直線 上的充要條件是存在實(shí)數(shù)上的充要條件是存在實(shí)數(shù)t,t,滿足等式滿足等式OP=OA+t OP=OA+t 其中向量叫做直線的其中向量叫做直線的方向向量方向向量. .llaaOABPa 若若P P為為A,BA,B中點(diǎn)中點(diǎn), , 則則12 OPOAOB例例1 1已知已知A A、B B、P P三點(diǎn)共線,三點(diǎn)共線,O O為空間任為空間任意一點(diǎn),且意一點(diǎn),且 ,求,求 的值的值. . OPOAOB例例2 2用向量的方法證明:順次連結(jié)空間用向量的方法證明:順次連結(jié)空間四邊形各邊中點(diǎn)所得的四邊形為平行四四邊形各邊

3、中點(diǎn)所得的四邊形為平行四邊形。邊形。HGFEABCD1.下列說明正確的是:下列說明正確的是:A.在平面內(nèi)共線的向量在空間不一定共在平面內(nèi)共線的向量在空間不一定共線線B.在空間共線的向量在平面內(nèi)不一定共在空間共線的向量在平面內(nèi)不一定共線線C.在平面內(nèi)共線的向量在空間一定不共在平面內(nèi)共線的向量在空間一定不共線線D.在空間共線的向量在平面內(nèi)一定共線在空間共線的向量在平面內(nèi)一定共線2.下列說法正確的是:下列說法正確的是:A.平面內(nèi)的任意兩個(gè)向量都共線平面內(nèi)的任意兩個(gè)向量都共線B.空間的任意三個(gè)向量都不共面空間的任意三個(gè)向量都不共面C.空間的任意兩個(gè)向量都共面空間的任意兩個(gè)向量都共面D.空間的任意三個(gè)向

4、量都共面空間的任意三個(gè)向量都共面3.對于空間任意一點(diǎn)對于空間任意一點(diǎn)O,下列命題正確的,下列命題正確的是:是:A.若,則若,則P、A、B共線共線B.若,則若,則P是是AB的中點(diǎn)的中點(diǎn)C.若,則若,則P、A、B不共線不共線D.若,則若,則P、A、B共線共線 OPOAtAB3 OPOAAB OPOAtAB OPOAAB4.若對任意一點(diǎn)若對任意一點(diǎn)O,且,且,則則x+y=1是是P、A、B三點(diǎn)共線的:三點(diǎn)共線的:A.充分不必要條件充分不必要條件B.必要不充分條件必要不充分條件C.充要條件充要條件D.既不充分也不必要條件既不充分也不必要條件 OPxOAyAB(1) APPB5.設(shè)點(diǎn)設(shè)點(diǎn)P在直線在直線AB

5、上并且上并且,O為空間任意一點(diǎn),求證:為空間任意一點(diǎn),求證:1 OAOBOP二二. .共面向量共面向量: :1.1.共面向量共面向量: :平行于同一平面的向量平行于同一平面的向量, ,叫做共面向量叫做共面向量. .OAaa注意:注意:空間任意兩個(gè)向量是共面的,但空間空間任意兩個(gè)向量是共面的,但空間任意三個(gè)向量就不一定共面的了。任意三個(gè)向量就不一定共面的了。2.2.共面向量定理共面向量定理: :如果兩個(gè)向量如果兩個(gè)向量 不共線不共線, ,則向量則向量 與向量與向量 共面的充要共面的充要條件是存在實(shí)數(shù)對條件是存在實(shí)數(shù)對 使使, a byx,Pxayb p, a bOMabABAPp 推論推論: :

6、空間一點(diǎn)空間一點(diǎn)P P位于平面位于平面MABMAB內(nèi)的充內(nèi)的充要條件是存在有序?qū)崝?shù)對要條件是存在有序?qū)崝?shù)對x,yx,y使使 或?qū)臻g任一點(diǎn)或?qū)臻g任一點(diǎn)O,O,有有 MPxMAyMB OPOMxMAyMB例例3對空間任意一點(diǎn)對空間任意一點(diǎn)O和不共線的三點(diǎn)和不共線的三點(diǎn)A、B、C,試問滿足向量關(guān)系式,試問滿足向量關(guān)系式(其中)的四點(diǎn)(其中)的四點(diǎn)P、A、B、C是否共面?是否共面? OPxOAyOBzOC1xyz例例4已知已知A、B、M三點(diǎn)不共線,對于平面三點(diǎn)不共線,對于平面ABM外的任一點(diǎn)外的任一點(diǎn)O,確定在下列各條件下,確定在下列各條件下,點(diǎn)點(diǎn)P是否與是否與A、B、M一定共面?一定共面?(1)

7、3OB OMOPOA (2)4OPOAOBOM 注意:注意:空間四點(diǎn)空間四點(diǎn)P、M、A、B共面共面 存存在在唯唯一一實(shí)數(shù)對實(shí)數(shù)對,xyMPxMAyMB () 使得(1)OPxOMyOAzOBxyz 其其中中,例例5如圖,已知平行四邊形如圖,已知平行四邊形ABCD,從平,從平面面AC外一點(diǎn)外一點(diǎn)O引向量引向量 , , , ,求證:求證:四點(diǎn)四點(diǎn)E、F、G、H共面;共面;平面平面EG/平面平面AC。 OEkOA OFkOBOGkOC OHkODDABCDABCO1.下列命題中正確的有:下列命題中正確的有:(1)pxaybpab 與與、 共共面面 ; ;(2) pabpxayb 與與、 共共面面;(

8、3) MPxMAyMBPMAB 、 、 共共面面;(4) PMA BMPxMAyMB 、 、 、 共共面面;A.1個(gè)個(gè)B.2個(gè)個(gè)C.3個(gè)個(gè)D.4個(gè)個(gè)2.對于空間中的三個(gè)向量對于空間中的三個(gè)向量它們一定是:它們一定是:A.共面向量共面向量B.共線向量共線向量C.不共面向量不共面向量D.既不共線又不共面向量既不共線又不共面向量2MAMBMAMB 、3.已知點(diǎn)已知點(diǎn)M在平面在平面ABC內(nèi),并且對空間任內(nèi),并且對空間任意一點(diǎn)意一點(diǎn)O, ,則則x的值為:的值為:OMxOAOBOC 111133331.1. 0.3.3ABCD4.已知已知A、B、C三點(diǎn)不共線,對平面外一點(diǎn)三點(diǎn)不共線,對平面外一點(diǎn)O,在下列條件下,點(diǎn),在下列條件下,點(diǎn)P是否與是否與A、B、C共面?共面?212(1);555OPOAOBOC (2)22OPOAOBOC ;5.課本第課本第31頁練習(xí)頁練習(xí)1、2。三、課堂小結(jié):三、課堂小結(jié):1.共線向量的概念。共線向量的概念。2.共線向量定理。共線向量定理。3.共面向量的概念。共面向量的概念。4.共面向量定理。共面向量定理。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!