《江西省中考數(shù)學(xué) 第一部分 教材同步復(fù)習(xí) 第八章 數(shù)據(jù)與概率 32 概率及其應(yīng)用課件 新人教版》由會員分享,可在線閱讀,更多相關(guān)《江西省中考數(shù)學(xué) 第一部分 教材同步復(fù)習(xí) 第八章 數(shù)據(jù)與概率 32 概率及其應(yīng)用課件 新人教版(28頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、教材同步復(fù)習(xí)教材同步復(fù)習(xí)第一部分第一部分 32、概率及其應(yīng)用、概率及其應(yīng)用知識要點(diǎn)知識要點(diǎn) 歸納歸納32、概率及其應(yīng)用、概率及其應(yīng)用 知識點(diǎn)一事件的分類知識點(diǎn)一事件的分類必然事件必然事件不確定事件不確定事件1 1必然事件:在現(xiàn)實(shí)生活中_的事件 2不可能事件:一定不會發(fā)生的事件 3隨機(jī)事件:事先無法肯定是否會發(fā)生的事件 【注意】(1)一般地,不確定事件發(fā)生的可能性是有大小的,它的大小要由它在整個(gè)問題中所占比例的大小來確定,它占整體的比例大,它的可能性就大,它占整體的比例小,它的可能性就小不確定事件發(fā)生的概率在0到1之間,不包括0和1;(2)必然事件發(fā)生的機(jī)率是100%,即概率為1,不可能事件發(fā)生
2、的機(jī)率為0,即概率為0.肯定會發(fā)生肯定會發(fā)生2 【注意】頻率與概率在試驗(yàn)中可以非常接近,但不一定相等,用頻率估計(jì)概率的大小,必須在相同條件下,試驗(yàn)次數(shù)越多,就越能較好地估計(jì)概率 知識點(diǎn)二頻率與概率知識點(diǎn)二頻率與概率3 1概率的定義 對于一個(gè)隨機(jī)事件A,我們把其發(fā)生可能性大小的數(shù)值,稱為隨機(jī)事件A發(fā)生的概率,記為P(A) 2概率的意義:概率從數(shù)量上刻畫了一個(gè)隨機(jī)事件發(fā)生的可能性的大小 3概率的計(jì)算方法 (1)公式法:一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率為P(A)_. 知識點(diǎn)三概率知識點(diǎn)三概率4 (2)幾何概型:一個(gè)試
3、驗(yàn)涉及的圖形面積是s,事件A發(fā)生時(shí)涉及的面積是s1,則事件A發(fā)生的概率P(A)_. (3)列舉法求概率567 4.判斷游戲的公平性 判斷游戲的公平性是通過概率來判斷的,在條件相等的前提下,如果對于參加游戲的每一個(gè)人獲勝的概率都相等,則游戲公平,否則不公平8 【例1】(2015江西節(jié)選)在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè)先從袋子中取出m(m1)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A請完成下列表格:三年中考三年中考 講練講練事件的分類事件的分類事件事件A必然事件必然事件隨機(jī)事件隨機(jī)事件m的值的值_42或或39 【思路點(diǎn)撥】本題考查事件的分類當(dāng)
4、袋子中全部為黑球時(shí),摸出黑球才是必然事件,否則就是隨機(jī)事件 【解答】(1)當(dāng)袋子中全為黑球,即摸出4個(gè)紅球,摸到黑球是必然事件;當(dāng)摸出2個(gè)或3個(gè)時(shí),摸到黑球?yàn)殡S機(jī)事件101.(2016徐州改編)“通常加熱到100時(shí),水沸騰”這是_事件(選題“隨機(jī)”或“必然”)必然必然11 【例2】(2016江西)甲、乙兩人利用撲克牌玩“10點(diǎn)”游戲,游戲規(guī)則如下: 將牌面數(shù)字作為“點(diǎn)數(shù)”,如紅桃6的“點(diǎn)數(shù)”就是6(牌面點(diǎn)數(shù)與牌的花色無關(guān)); 兩人摸牌結(jié)束時(shí),將所摸牌的“點(diǎn)數(shù)”相加,若“點(diǎn)數(shù)”之和小于或等于10,此時(shí)“點(diǎn)數(shù)”之和就是“最終點(diǎn)數(shù)”;若“點(diǎn)數(shù)”之和大于10,則“最終點(diǎn)數(shù)”是0; 游戲結(jié)束前雙方均不知
5、道對方“點(diǎn)數(shù)”;概率的計(jì)算概率的計(jì)算 12 判定游戲結(jié)果的依據(jù)是:“最終點(diǎn)數(shù)”大的一方獲勝,“最終點(diǎn)數(shù)”相等時(shí)不分勝負(fù) 現(xiàn)甲、乙均各自摸了兩張牌,數(shù)字之和都是5,這時(shí)桌上還有四張背面朝上的撲克牌,牌面數(shù)字分別是4,5,6,7. (1)若甲從桌上繼續(xù)摸一張撲克牌,乙不再摸牌,則甲獲勝的概率為_; (2)若甲先從桌上繼續(xù)摸一張撲克牌,接著乙從剩下的撲克牌中摸出一張牌,然后雙方不再摸牌請用樹狀圖或表格表示出這次摸牌后所有可能的結(jié)果,再列表呈現(xiàn)甲、乙的“最終點(diǎn)數(shù)”,并求乙獲勝的概率13 【思路點(diǎn)撥】本題考查概率的簡單計(jì)算及用列舉法求概率(1)現(xiàn)由甲、乙均各自摸了兩張牌,數(shù)字之和都是5,甲從桌上繼續(xù)摸一
6、張撲克牌,乙不再摸牌,甲摸牌數(shù)字是4與5則獲勝,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后根據(jù)樹狀圖列出甲、乙的“最終點(diǎn)數(shù)”,繼而求得答案1415 列表得:甲甲54567甲甲“最最終點(diǎn)數(shù)終點(diǎn)數(shù)”91000乙乙5567467457456乙乙“最最終點(diǎn)數(shù)終點(diǎn)數(shù)”101010910091009100獲勝情獲勝情況況乙乙勝勝甲勝甲勝甲勝甲勝甲勝甲勝甲勝甲勝甲勝甲勝乙勝乙勝乙勝乙勝平平乙勝乙勝乙勝乙勝平平162.(2014江西)有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上“,”,在B組的卡片上分別畫上“,”,如圖1所示 (1)若將卡片無標(biāo)記的一面朝上擺在
7、桌上再分別從兩組卡片中隨機(jī)各抽取一張,求兩張卡片上標(biāo)記都是“”的概率;(請用“樹狀圖法”或“列表法”求解)(2)若把若把A,B兩組卡片無標(biāo)記的一面對應(yīng)粘貼兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到三張卡片,其正、反面標(biāo)記如圖在一起得到三張卡片,其正、反面標(biāo)記如圖2所所示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標(biāo)示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標(biāo)記記若隨機(jī)揭開其中一個(gè)蓋子,看到的標(biāo)記是若隨機(jī)揭開其中一個(gè)蓋子,看到的標(biāo)記是“”的概率是多少?的概率是多少?17 若揭開蓋子,看到的卡片正面標(biāo)記是“”后,猜想它的反面也是“”,求猜對的概率 【考查內(nèi)容】列舉法求概率1819摸球游戲中的放回與不放回摸球游
8、戲中的放回與不放回2021 【名師辨析】本題的錯誤之處在于審題不清,或者說是沒有注意第二步是放回還是不放回,當(dāng)放回時(shí)第二次摸球時(shí)四個(gè)球都有可能摸到,當(dāng)不放回時(shí)第二次摸球時(shí)只有三個(gè)球(除去第一次摸出的球),本題的解法正好將不放回當(dāng)成放回在解答,故解題錯誤22 1. 某衛(wèi)視最強(qiáng)大腦曾播出一期“辨臉識人”節(jié)目,參賽選手以家庭為單位,每組家庭由爸爸、媽媽和寶寶3人組成,爸爸、媽媽和寶寶分散在三塊區(qū)域,選手需在寶寶中選一個(gè)寶寶,然后分別在爸爸區(qū)域和媽媽區(qū)域中正確找出這個(gè)寶寶的父母,不考慮其他因素,僅從數(shù)學(xué)角度思考,已知在某分期比賽中有A、B、C三組家庭進(jìn)行比賽: (1)選手選擇A組家庭的寶寶,求在媽媽區(qū)域中正確找出其媽媽的概率; (2)如果任選一個(gè)寶寶(假如選A組家庭),通過列表或樹狀圖的方法,求選手至少正確找對寶寶父母其中一人的概率 【考查內(nèi)容】概率公式,應(yīng)用列舉法求概率2017權(quán)威權(quán)威 預(yù)測預(yù)測23242526