《湖南省高中數(shù)學(xué)(第2輪)總復(fù)習(xí) 專題3第11講 數(shù)列模型、數(shù)列與不等式綜合問題課件 理 新人教版》由會員分享,可在線閱讀,更多相關(guān)《湖南省高中數(shù)學(xué)(第2輪)總復(fù)習(xí) 專題3第11講 數(shù)列模型、數(shù)列與不等式綜合問題課件 理 新人教版(31頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題一 函數(shù)與導(dǎo)數(shù)專題三 不等式、數(shù)列、推理與證明 111111()(1. )1()1(112)nnnnnnnnnnnnaaaf nf naqapaq pqapqp apapaf npag np ag n求數(shù)列通項(xiàng)的常見方法:累加 乘 法:形如或構(gòu)造等差或等比數(shù)列法:如:, 為常數(shù) ,變形為;為常數(shù) ,為轉(zhuǎn)化;12212111,223nnnnnnnaaabapaqaaAaB aAaABn,轉(zhuǎn)化為,用待定系數(shù)法求 、 ,從而轉(zhuǎn)化為等比數(shù)列求解數(shù)列是定義在正整數(shù)集或其有限子集, ,上的特殊函數(shù),在解決數(shù)列問題時(shí),可應(yīng)用函數(shù)的概念、性質(zhì)實(shí)現(xiàn)問題的轉(zhuǎn)化,利用動態(tài)的函數(shù)觀點(diǎn),結(jié)合導(dǎo)數(shù)等知識是解決數(shù)列問題
2、的有效方法以數(shù)列為載體,通過數(shù)列的和或項(xiàng)來考查不等式的證明或應(yīng)用是常見題型,應(yīng)注意不等式的證明方法、數(shù)列求和方法等知識的綜合應(yīng)用同時(shí)解題時(shí)應(yīng)善于運(yùn)用基本數(shù)學(xué)方法,如觀察法、類比法、數(shù)形結(jié)合法等 4數(shù)列模型應(yīng)用問題國民經(jīng)濟(jì)發(fā)展中的大量問題,如人口增長、產(chǎn)量的增加、成本的降低、存貸款利息的計(jì)算等應(yīng)用問題,就是數(shù)列所要解決的問題實(shí)際問題中,若問題實(shí)質(zhì)反映的是前后相鄰兩次(或三次)之間的某種固定關(guān)系,適合應(yīng)用數(shù)列建模求解 11*12320092010121()()A.6 B.3 C.2 .1 D 1nnnnaaaaanaaaaaN一、周期數(shù)列與創(chuàng)已知數(shù)列滿足,則連乘積例1的值為 新型數(shù)列問題 *(2)
3、 1()_2_nnnnnknnaaap nnNpaaaaakNka定義:在數(shù)列中,若, 為常數(shù) 則稱數(shù)列為“等方差數(shù)列”下列是對“等方差數(shù)列”的判斷:若是等方差數(shù)列,則是等差數(shù)列;是等方差數(shù)列;若是等方差數(shù)列,則, 為常數(shù) 也是等方差數(shù)列;若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列其中正確命題序號為 123412320092010200920101222212212A. 416111201nnnnnnnnnknaa aaaa aaaaaaa aaapaaaa 歸納出數(shù)列是以 為周期的數(shù)列,且,故,對于,由知是等差數(shù)列,命題正確對于,由于,則是等方差數(shù)列,命題正確對于,是等方差數(shù)列,由知是
4、等差數(shù)列,則數(shù)選列故解析:222(1)()knk naad是等差數(shù)列,即常數(shù) ,命題正確2211().22nnnnnaapaaddpad對于,根據(jù)條件知,解得常數(shù) ,命題故填正確 12本題可以訓(xùn)練學(xué)生的歸納推理能力,猜想數(shù)列可能是周期數(shù)列,然后探究數(shù)列的周期性有關(guān)數(shù)列的新定義型試題在高考命題中較常見,問題分析求解的關(guān)鍵是理解“新定義”的內(nèi)涵并準(zhǔn)【點(diǎn)評】確應(yīng)用201150020600(1)500(1)()2nnn某企業(yè)年的純利潤為萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降若不能進(jìn)行技術(shù)改造,預(yù)測從今年起每年比上一年純利潤減少萬元今年初該企業(yè)一次性投入資金萬元進(jìn)行技術(shù)改造,預(yù)測在未扣除技術(shù)改
5、造資金的情況下,第二、數(shù)列模型應(yīng)年 今年為第一年 的例2利潤為萬元為正用問整數(shù)題 ()12nnnnnABAB設(shè)從今年起的前 年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤為萬元,進(jìn)行技術(shù)改造后的累計(jì)純利潤為萬元 須扣除技術(shù)改造資金 ,求、的表達(dá)式;依上述預(yù)測,從今年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造后的累計(jì)純利潤超過不進(jìn)行技術(shù)改造的累計(jì)純利潤? 22250020148020490102111500(1)500(1)500(1)600222111500500()600222111225500510005006001120100.2nnnnnnnAn nAnnnBnnn 依題意知,數(shù)列解是一個(gè)以為首項(xiàng),
6、為公差的等差數(shù)析列:,所以, 222 5005001004901025050102210.50503324410816244nnnnnBAnnnnnf ng nnnnf ng nfgfgnN則時(shí)不等式成立依題意得,即,可化簡得,所以,即至少經(jīng)過 年進(jìn)行技術(shù)改造可設(shè),又因?yàn)?,是后累?jì)純利潤將超減函數(shù),是增函數(shù)又,過不改造的累計(jì)純利潤數(shù)列模型實(shí)際應(yīng)用問題的顯著情境是一次一次的變化,且前后相鄰兩次或三次顯現(xiàn)固定的變化模式;求解時(shí)可依次探究,歸納出一般規(guī)律,也可找相鄰前后二次或三次的遞推關(guān)系式,然后化歸為特殊數(shù)列問【點(diǎn)評】題求解 12111(201320.93337811123)8nnnnnnnnnn
7、nnnnnaaanSnaSa SSaabbnaaTnT 例3已知數(shù)列中,其前 項(xiàng)和為,且當(dāng)時(shí),求證:數(shù)列是等比數(shù)列;求數(shù)列的通項(xiàng)公式;令,記數(shù)列的前 項(xiàng)和為,證明對于任意的正整數(shù) ,都三、數(shù)列與成都不等式綜合問有模擬題成立 112111111112121112SS(2)104001141 4.1223 4 1 nnnnnnnnnnnnnnnnnnnnnnnnnnaSa SSSSSSSSSSSnSSnSSSnaSSaSSa 證明:當(dāng)時(shí),所以又由,可推知對一所以數(shù)列是等比數(shù)切正整數(shù)均有,由知等比數(shù)列的首項(xiàng)為 ,公比為 ,所以當(dāng)時(shí),列,又,所以解析:2 1.3 4 2nnn 212221211112
8、1122123 49339 3 43 4.3 43 3 4341 4193338318373 488241 413nnnnnnnnnnnnnnnnnaabaaabaanbTbn 證明:當(dāng)時(shí),此時(shí)又,所以,22121122 22 121113 411241 414141311()8414111717().4141841837880nnnnnnnnnnnnnnnnbTbbbnbTTTnT 當(dāng)時(shí),又因?yàn)閷θ我馑詫τ谌我獾恼麛?shù)的正整數(shù) 都有,所以單調(diào)遞增,都有,即,成立 12本題第小題作為等差數(shù)列通項(xiàng)公式的逆用,體現(xiàn)了對等差數(shù)列的另一種刻畫第小題涉及構(gòu)造函數(shù)、運(yùn)用函數(shù)單調(diào)性論證不等式,這種分析求解
9、方法在高考中頻【點(diǎn)評】繁出現(xiàn) 11*1121234*111*121213111()(2)2(2)11110(1)(1)(1)(23)31nnnnnnnnnnnnnbbbbaaabnnbbbbbbbabnnabnaaaNNN數(shù)列滿足,若數(shù)列滿足,且求 , ,及 ;求證:且;求證:例4 2341111*12211211121111137152112111 22111()12(2)11111111121.nnnnnnnnnnnnnnnnnnnnnnnnnnnnbbbbbbbbbabnnbbbaabbbbbbbbbaaaabbbbbb N,由,所以證明:因?yàn)榍?,?以,以析所解,*111(2)nnnn
10、abnnabN且 1212123122111231341121111212121112(1)(1)(1)111111123211122()3111131()132111(1)(1nnnnnnnnnnnnnnnnaaaaaaaaaabbaabaaaaaabbbababbbbbbbbaa 證明:由知,而,121111)(1)2()nnabbb111112123341112122121 212112(),21 21212111132111110(1)(1111111 2()()()212121212121111)(1).51 2()32313nkkkkkkkkknnnnaaak 當(dāng),所以時(shí),所以 本
11、例涉及兩個(gè)數(shù)列,問題實(shí)質(zhì)是有關(guān)數(shù)列的通項(xiàng)、恒等式和不等式的證明,求解策略是應(yīng)用轉(zhuǎn)化化歸思想和推理證明方法其中不等式證明運(yùn)用的放縮技巧【點(diǎn)評】是難點(diǎn) 12211*2*12()2463,23(2,3)1(1,2).21()3213()nnnnnnnnnnnfxxaxb abfxxxxabaaf anbnbnSaabSnanNN設(shè)函數(shù)、 為實(shí)數(shù) ,已知不等式對任意的實(shí)數(shù)均成立定義數(shù)列和:, , ,數(shù)列的前 項(xiàng)和為求 、 的值;求備選題 證:求證: 22211111211121111 2462|31 |3010.232322 (2)1(2)22231.221222222.12nnnnnnnnnnnnn
12、nnnnnnnnnnf xxxxxxffabaf aaaaananaaaaaaabaaa aaaa aaf xxx R由,對均成立得,故,所以由,得,以解所析:11nna-,*1212231111211211112111111()()111111()1().322(2)220(2)(2)3003nnnnnnnnnnnnnnnnnnSnSbbbaaaaaaaaaaaanaaanaanaaaaaN所以因?yàn)?,所以,所以從而,即,所?1212121n122121112112122(2)12121 (2)142cc(2)1 log2log(2)log212(2)121 (2)121212(2)3nnn
13、nnnnnnnnnnnnnnnnnnaaanaaanaccnccndcdddnddndddnn 由,得設(shè),則,且,于是設(shè),則,且,所以,所以,從而1111-111222*21221222121.13221()1 1nnnnnnnndnnndcacnaan N時(shí),所以,所以當(dāng)時(shí)以,所n本題集數(shù)列、函數(shù)、不等式于一體,主要考查數(shù)列的概念、數(shù)列的遞推公式、數(shù)列的通項(xiàng)求法、數(shù)列前 項(xiàng)和的求法、構(gòu)造新數(shù)列法、裂項(xiàng)相消法等知識與方法,此題對學(xué)生分析問題與解決問題的能力,邏輯推理能力以及運(yùn)算能力的要【點(diǎn)評】求較高1數(shù)列模型應(yīng)用題的求解策略與數(shù)列有關(guān)的應(yīng)用題大致有三類:一類是有關(guān)等差數(shù)列的應(yīng)用題;二是有關(guān)等比
14、數(shù)列的應(yīng)用題;三是有關(guān)遞推數(shù)列且可化成等差、等比數(shù)列的應(yīng)用題當(dāng)然,還包括上述三類問題的綜合其中第一類問題在內(nèi)容上比較簡單,建立等差數(shù)列模型后,問題常常轉(zhuǎn)化成整式或不等式處理,很容易計(jì)算對第二類問題,建立等比數(shù)列的模型后,弄清項(xiàng)數(shù)是關(guān)鍵,運(yùn)算中往往要運(yùn)用指數(shù)或?qū)?shù)知識,并依據(jù)題設(shè)中所給參考數(shù)據(jù)進(jìn)行近似計(jì)算,對其結(jié)果要按要求保留一定的精確度對于第三類問題,要將線性遞推數(shù)列化歸為等比數(shù)列求解 2數(shù)列與不等式綜合問題求解思想解答數(shù)列與不等式的綜合問題時(shí)要善于運(yùn)用函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,利用數(shù)列為特殊函數(shù),用特例分析法、一般遞推法及數(shù)列的求和、求通項(xiàng)的基本方法、放縮法等方法綜合分析問題探究問題計(jì)算、推理、論證的途徑