選修4-1 幾何證明選講第2講 圓周角定理與圓的切線

上傳人:細水****9 文檔編號:56603409 上傳時間:2022-02-22 格式:DOC 頁數(shù):6 大?。?64KB
收藏 版權申訴 舉報 下載
選修4-1 幾何證明選講第2講 圓周角定理與圓的切線_第1頁
第1頁 / 共6頁
選修4-1 幾何證明選講第2講 圓周角定理與圓的切線_第2頁
第2頁 / 共6頁
選修4-1 幾何證明選講第2講 圓周角定理與圓的切線_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《選修4-1 幾何證明選講第2講 圓周角定理與圓的切線》由會員分享,可在線閱讀,更多相關《選修4-1 幾何證明選講第2講 圓周角定理與圓的切線(6頁珍藏版)》請在裝配圖網上搜索。

1、 第2講 圓周角定理與圓的切線 考查圓的切線定理和性質定理的應用. 【復習指導】 本講復習時,牢牢抓住圓的切線定理和性質定理,以及圓周角定理和弦切角等有關知識,重點掌握解決問題的基本方法. 基礎梳理 1.圓周角定理 (1)圓周角:頂點在圓周上且兩邊都與圓相交的角. (2)圓周角定理:圓周角的度數(shù)等于它所對弧度數(shù)的一半. (3)圓周角定理的推論 ①同弧(或等弧)上的圓周角相等;同圓或等圓中,相等的圓周角所對的弧相等. ②半圓(或直徑)所對的圓周角是90°;90°的圓周角所對的弦是直徑. 2.圓的切線 (1)直線與圓的位置關系 直線與圓交點的個數(shù) 直線到圓心的

2、距離d與圓的半徑r的關系 相交 兩個 d<r 相切 一個 d=r 相離 無 d>r (2)切線的性質及判定 ①切線的性質定理:圓的切線垂直于經過切點的半徑. ②切線的判定定理 過半徑外端且與這條半徑垂直的直線是圓的切線. (3)切線長定理 從圓外一點引圓的兩條切線長相等. 3.弦切角 (1)弦切角:頂點在圓上,一邊與圓相切,另一邊與圓相交的角. (2)弦切角定理及推論 ①定理:弦切角的度數(shù)等于所夾弧的度數(shù)的一半. ②推論:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角與圓周角相等. 雙基自測 1.如圖所示,△ABC中,∠C=90°,AB=10

3、,AC=6,以AC為直徑的圓與斜邊交于點P,則BP長為________. 解析 連接CP.由推論2知∠CPA=90°,即CP⊥AB,由射影定理知,AC2= AP·AB.∴AP=3.6,∴BP=AB-AP=6.4. 答案 6.4 2.如圖所示,AB、AC是⊙O的兩條切線,切點分別為B、C,D是優(yōu)弧上的點,已知∠BAC=80°, 那么∠BDC=________. 解析 連接OB、OC,則OB⊥AB,OC⊥AC,∴∠BOC=180°-∠BAC=100°, ∴∠BDC=∠BOC=50°. 答案 50° 3.(2011·廣州測試(一))如圖所示,CD是圓O的切線,切點為C,點A、B在圓O

4、上,BC=1,∠BCD=30°,則圓O的面積為________. 解析 連接OC,OB,依題意得,∠COB=2∠CAB=2∠BCD=60°,又OB=OC, 因此△BOC是等邊三角形, OB=OC=BC=1,即圓O的半徑為1, 所以圓O的面積為π×12=π. 答案 π 4. (2011·深圳二次調研)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點D,AD=2,則∠C的大小為________. 解析 連接BD,則有∠

5、ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°. 答案 30° 5.(2011·汕頭調研)如圖,MN是圓O的直徑,MN的延長線與圓O上過點P的切線PA相交于點A,若∠M=30°,AP=2,則圓O的直徑為________. 解析 連接OP,因為∠M=30°,所以∠AOP=60°,因為PA切圓O于P,所以OP⊥AP,在Rt△ADO中,OP===2,故圓O的直徑為4. 答案 4 考向一 圓周角的計算與證明 【例1】?(2011·中山模擬

6、)如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AB=3,CD=1,則sin∠APB=________. [審題視點] 連結AD,BC,結合正弦定理求解. 解析 連接AD,BC.因為AB是圓O 的直徑,所以∠ADB=∠ACB=90°. 又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:====AB=3,又CD=1,所以sin∠DAC=sin∠DAP=,所以cos∠DAP=. 又sin∠APB=sin (90°+∠DAP)=cos∠DAP=. 答案  解決本題的關鍵是尋找∠APB與∠DAP的關系以及AD與AB的關系. 【訓練1】 如圖,點A,B,C是圓O上的點,且AB

7、=4,∠ACB=30°,則圓O的面積等于________. 解析 連接AO,OB.因為∠ACB=30°,所以∠AOB=60°,△AOB為等邊三角形,故圓O的半徑r=OA=AB=4,圓O的面積S=πr2=16π. 答案 16π 考向二 弦切角定理及推論的應用 【例2】?如圖,梯形ABCD內接于⊙O,AD∥BC,過B引⊙O的切線分別交DA、CA的延長線于E、F.已知BC=8,CD=5,AF=6,則EF的長為________. [審題視點] 先證明△EAB∽△ABC,再由AE∥BC及=等條件轉化為線 段之間的比例關系,從而求解. 解

8、析 ∵BE切⊙O于B,∴∠ABE=∠ACB. 又AD∥BC,∴∠EAB=∠ABC, ∴△EAB∽△ABC,∴=. 又AE∥BC,∴=,∴=. 又AD∥BC,∴=, ∴AB=CD,∴=,∴=, ∴EF==. 答案  (1)圓周角定理及其推論與弦切角定理及其推論多用于推出角的關系,從而證明三角形全等或相似,可求線段或角的大?。? (2)涉及圓的切線問題時要注意弦切角的轉化;關于圓周上的點,常作直線(或半徑)或向弦(弧)兩端畫圓周角或作弦切角. 【訓練2】 (2010·新課標全國)如圖,已知圓上的?。剑^C點的圓的切線與BA的延長線交于E點,證明:

9、 (1)∠ACE=∠BCD; (2)BC2=BE×CD. 證明 (1)因為=, 所以∠BCD=∠ABC. 又因為EC與圓相切于點C,故∠ACE=∠ABC, 所以∠ACE=∠BCD. (2)因為∠ECB=∠CDB,∠EBC=∠BCD, 所以△BDC∽△ECB,故=, 即BC2=BE×CD. 高考中幾何證明選講問題(二) 從近兩年的新課標高考試題可以看出,圓的切線的有關知識是重點考查對象,并且多以填空題的形式出現(xiàn). 【示例】? (2011·天津卷)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=,AF∶FB∶BE=4∶2∶1.若CE與圓相切,則線段CE的長為________.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!