高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 12.2 古典概型課件 理 蘇教版
《高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 12.2 古典概型課件 理 蘇教版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 12.2 古典概型課件 理 蘇教版(69頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、12.2古典概型基礎(chǔ)知識自主學(xué)習(xí)課時作業(yè)題型分類深度剖析內(nèi)容索引基礎(chǔ)知識基礎(chǔ)知識自主學(xué)習(xí)自主學(xué)習(xí)1.基本事件的特點基本事件的特點(1)任何兩個基本事件是 的;(2)任何事件(除不可能事件)都可以表示成 的和.2.古典概型古典概型具有以下兩個特點的概率模型稱為 ,簡稱古典概型.(1)所有的基本事件只有 個;(2)每個基本事件的發(fā)生都是 的.知識梳理互斥基本事件古典概率模型有限等可能3.如果1次試驗的等可能基本事件共有n個,那么每一個等可能基本事件發(fā)生的概率都是_.如果某個事件A包含了其中m個等可能基本事件,那么事件A發(fā)生的概率為P(A)_.4.古典概型的概率古典概型的概率公式公式P(A)_.思考
2、辨析思考辨析判斷下列結(jié)論是否正確(請在括號中打“”或“”)(1)“在適宜條件下,種下一粒種子觀察它是否發(fā)芽”屬于古典概型,其基本事件是“發(fā)芽與不發(fā)芽”.()(2)擲一枚硬幣兩次,出現(xiàn)“兩個正面”“一正一反”“兩個反面”,這三個結(jié)果是等可能事件.()(3)從市場上出售的標(biāo)準(zhǔn)為5005 g的袋裝食鹽中任取一袋,測其重量,屬于古典概型.()(4)(教材改編)有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為 .()(5)從1,2,3,4,5中任取出兩個不同的數(shù),其和為5的概率是0.2.()(6)在古典概型中,如果事件A中基本事
3、件構(gòu)成集合A,且集合A中的元素個數(shù)為n,所有的基本事件構(gòu)成集合I,且集合I中元素個數(shù)為m,則事件A的概率為 .()考點自測從5本書中取出2本書,基本事件有10個.從3本數(shù)學(xué)書中取出2本書的事件有3個,故所求的概率為 .1.已知書架上有3本數(shù)學(xué)書,2本物理書,若從中隨機(jī)取出2本,則取出的2本書都是數(shù)學(xué)書的概率為_.答案解析從甲、乙等5名學(xué)生中隨機(jī)選2人共有10種情況,甲被選中有4種情況,則甲被選中的概率為 .2.(2016北京改編)從甲、乙等5名學(xué)生中隨機(jī)選出2人,則甲被選中的概率為_.答案解析3.(2015課標(biāo)全國改編)如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),
4、從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為_.答案解析從1,2,3,4,5中任取3個不同的數(shù)共有如下10種不同的結(jié)果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股數(shù)只有(3,4,5),所以概率為 .4.從正方形四個頂點及其中心這5個點中,任取2個點,則這2個點的距離不小于該正方形邊長的概率為_.答案解析取兩個點的所有情況為10種,所有距離不小于正方形邊長的情況有6種,概率為 .5.(教材改編)同時擲兩個骰子,向上點數(shù)不相同的概率為_.答案解析
5、擲兩個骰子一次,向上的點數(shù)共6636(種)可能的結(jié)果,其中點數(shù)相同的結(jié)果共有6個,題型分類題型分類深度剖析深度剖析題型一基本事件與古典概型的判斷題型一基本事件與古典概型的判斷例例1(1)有兩顆正四面體的玩具,其四個面上分別標(biāo)有數(shù)字1,2,3,4,下面做投擲這兩顆正四面體玩具的試驗:用(x,y)表示結(jié)果,其中x表示第1顆正四面體玩具出現(xiàn)的點數(shù),y表示第2顆正四面體玩具出現(xiàn)的點數(shù).試寫出:試驗的基本事件;解答這個試驗的基本事件為(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4
6、,3),(4,4).事件“出現(xiàn)點數(shù)之和大于3”包含的基本事件;解答事件“出現(xiàn)點數(shù)之和大于3”包含的基本事件為(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).事件“出現(xiàn)點數(shù)相等”包含的基本事件.解答事件“出現(xiàn)點數(shù)相等”包含的基本事件為(1,1),(2,2),(3,3),(4,4).(2)袋中有大小相同的5個白球,3個黑球和3個紅球,每球有一個區(qū)別于其他球的編號,從中摸出一個球.有多少種不同的摸法?如果把每個球的編號看作一個基本事件建立概率模型,該模型是不是古典概型?解答由于共有11個球,且
7、每個球有不同的編號,故共有11種不同的摸法.又因為所有球大小相同,因此每個球被摸中的可能性相等,故以球的編號為基本事件的概率模型為古典概型.若按球的顏色為劃分基本事件的依據(jù),有多少個基本事件?以這些基本事件建立概率模型,該模型是不是古典概型?解答由于11個球共有3種顏色,因此共有3個基本事件,分別記為A:“摸到白球”,B:“摸到黑球”,C:“摸到紅球”,又因為所有球大小相同,所以一次摸球每個球被摸中的可能性均為 ,而白球有5個,故一次摸球摸到白球的可能性為 ,同理可知摸到黑球、紅球的可能性均為 ,顯然這三個基本事件出現(xiàn)的可能性不相等,所以以顏色為劃分基本事件的依據(jù)的概率模型不是古典概型.一個試
8、驗是否為古典概型,在于這個試驗是否具有古典概型的兩個特點有限性和等可能性,只有同時具備這兩個特點的概型才是古典概型.思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練1下列試驗中,古典概型的個數(shù)為_.向上拋一枚質(zhì)地不均勻的硬幣,觀察正面向上的概率;向正方形ABCD內(nèi),任意拋擲一點P,點P恰與點C重合;從1,2,3,4四個數(shù)中,任取兩個數(shù),求所取兩數(shù)之一是2的概率;在線段0,5上任取一點,求此點小于2的概率.答案解析1中,硬幣質(zhì)地不均勻,不是等可能事件,所以不是古典概型;的基本事件都不是有限個,不是古典概型;符合古典概型的特點,是古典概型.題型二古典概型的求法題型二古典概型的求法例例2(1)(2015江蘇)袋中有形狀、大
9、小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為_答案解析設(shè)取出的2只球顏色不同為事件A.(2)(2016山東)某兒童樂園在“六一”兒童節(jié)推出了一項趣味活動參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù)設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:a.若xy3,則獎勵玩具一個;b.若xy8,則獎勵水杯一個;c.其余情況獎勵飲料一瓶假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準(zhǔn)備參加此項活動求小亮獲得玩具的概率;解答用數(shù)對(x,y)表示兒童參加活動先后記錄的數(shù),則基本事件空間與點集S(x,y)|xN,yN
10、,1x4,1y4一一對應(yīng)因為S中元素的個數(shù)是4416,所以基本事件總數(shù)n16.記“xy3”為事件A,則事件A包含的基本事件共5個,即(1,1),(1,2),(1,3),(2,1),(3,1)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由解答記“xy8”為事件B,“3xy8”為事件C.則事件B包含的基本事件共6個,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)事件C包含的基本事件共5個,即(1,4),(2,2),(2,3),(3,2),(4,1)所以小亮獲得水杯的概率大于獲得飲料的概率引申探究引申探究1.本例(1)中,若將4個球改為顏色相同,標(biāo)號分別為1,2,3,
11、4的四個小球,從中一次取兩球,求標(biāo)號和為奇數(shù)的概率.解答基本事件數(shù)仍為6.設(shè)標(biāo)號和為奇數(shù)為事件A,則A包含的基本事件為(1,2),(1,4),(2,3),(3,4),共4種,2.本例(1)中,若將條件改為有放回地取球,取兩次,求兩次取球顏色相同的概率.解答求古典概型的概率的關(guān)鍵是求試驗的基本事件的總數(shù)和事件A包含的基本事件的個數(shù),這就需要正確列出基本事件,基本事件的表示方法有列舉法、列表法和樹形圖法,具體應(yīng)用時可根據(jù)需要靈活選擇.思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練2(1)(2016全國乙卷改編)為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,則紅色和紫色
12、的花不在同一花壇的概率是_.從4種顏色的花中任選2種種在一個花壇中,余下2種種在另一個花壇,有(紅黃),(白紫),(白紫),(紅黃),(紅白),(黃紫),(黃紫),(紅白),(紅紫),(黃白),(黃白),(紅紫),共6種種法,其中紅色和紫色不在一個花壇的種法有(紅黃),(白紫),(白紫),(紅黃),(紅白),(黃紫),(黃紫),(紅白),共4種,故所求概率為P .答案解析(2)某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)解答參加書法社團(tuán) 未參加書法社團(tuán)參加演講社團(tuán)85未參加演講社團(tuán)230從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一個社團(tuán)的概率;由調(diào)查數(shù)據(jù)
13、可知,既未參加書法社團(tuán)又未參加演講社團(tuán)的有30人,故至少參加上述一個社團(tuán)的共有453015(人),在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4,A5,3名女同學(xué)B1,B2,B3.現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率解答從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,其一切可能的結(jié)果組成的基本事件有 A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,A4,B1,A4,B2,A4,B3,A5,B1,A5,B2,A5,B3,共15個根據(jù)題意,這些基本事件的出現(xiàn)是等可能的,事件
14、“A1被選中且B1未被選中”所包含的基本事件有A1,B2,A1,B3,共2個題型三古典概型與統(tǒng)計的綜合應(yīng)用題型三古典概型與統(tǒng)計的綜合應(yīng)用例例3(2015安徽)某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工.根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:40,50),50,60),80,90),90,100.(1)求頻率分布直方圖中a的值;解答因為(0.004a0.0180.02220.028)101,所以a0.006.(2)估計該企業(yè)的職工對該部門評分不低于80的概率;解答由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為(
15、0.0220.018)100.4,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為0.4.(3)從評分在40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評分都在40,50)的概率.解答受訪職工中評分在50,60)的有500.006103(人),記為A1,A2,A3;受訪職工中評分在40,50)的有500.004102(人),記為B1,B2,從這5名受訪職工中隨機(jī)抽取2人,所有可能的結(jié)果共有10種,它們是A1,A2,A1,A3,A1,B1,A1,B2,A2,A3,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2.又因為所抽取2人的評分都在40,50)的結(jié)果有1種,即B1,B2,故
16、所求的概率為P .有關(guān)古典概型與統(tǒng)計結(jié)合的題型是高考考查概率的一個重要題型,已成為高考考查的熱點.概率與統(tǒng)計結(jié)合題,無論是直接描述還是利用頻率分布表、頻率分布直方圖、莖葉圖等給出信息,只要能夠從題中提煉出需要的信息,則此類問題即可解決.思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練3海關(guān)對同時從A,B,C三個不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測.解答地區(qū)ABC數(shù)量50150100(1)求這6件樣品中來自A,B,C各地區(qū)商品的數(shù)量;所以A,B,C三個地區(qū)的商品被選取的件數(shù)分別是1,3,2.(2)若在這6件樣品中
17、隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.解答設(shè)6件來自A,B,C三個地區(qū)的樣品分別為A;B1,B2,B3;C1,C2.則從6件樣品中抽取的這2件商品構(gòu)成的所有基本事件為A,B1,A,B2,A,B3,A,C1,A,C2,B1,B2,B1,B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15個.每個樣品被抽到的機(jī)會均等,因此這些基本事件的出現(xiàn)是等可能的.記事件D:“抽取的這2件商品來自相同地區(qū)”,則事件D包含的基本事件有B1,B2,B1,B3,B2,B3,C1,C2,共4個.所以P(D) ,即這2件商品來自相同地
18、區(qū)的概率為 .典例典例(14分)一個袋中裝有四個形狀、大小完全相同的球,球的編號分別為1,2,3,4.(1)從袋中隨機(jī)取兩個球,求取出的球的編號之和不大于4的概率;(2)先從袋中隨機(jī)取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為n,求nm2的概率. 六審細(xì)節(jié)更完善審題路線圖系列審題路線圖系列審題路線圖規(guī)范解答(1)基本事件為取兩個球(兩球一次取出,不分先后,可用集合的形式表示)把取兩個球的所有結(jié)果列舉出來1,2,1,3,1,4,2,3,2,4,3,4兩球編號之和不大于4(注意:和不大于4,應(yīng)為小于4或等于4)1,2,1,3利用古典概型概率公式求解(2)兩球分兩次
19、取,且有放回(兩球的編號記錄是有次序的,用坐標(biāo)的形式表示)基本事件的總數(shù)可用列舉法表示(1,1),(1,2),(1,3),(1,4)(2,1),(2,2),(2,3),(2,4)(3,1),(3,2),(3,3),(3,4)(4,1),(4,2),(4,3),(4,4)(注意細(xì)節(jié),m是第一個球的編號,n是第2個球的編號)nm2的情況較多,計算復(fù)雜(將復(fù)雜問題轉(zhuǎn)化為簡單問題)計算nm2的概率nm2的所有情況為(1,3),(1,4),(2,4) 返回解解(1)從袋中隨機(jī)取兩個球,其一切可能的結(jié)果組成的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6個.從袋中取出的球的編號之和不大于4
20、的事件有1,2,1,3,共2個.(2)先從袋中隨機(jī)取一個球,記下編號為m,放回后,再從袋中隨機(jī)取一個球,記下編號為n,其一切可能的結(jié)果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16個.8分又滿足條件nm2的事件為(1,3),(1,4),(2,4),共3個, 返回課時作業(yè)課時作業(yè)1.(2016全國丙卷改編)小敏打開計算機(jī)時,忘記了開機(jī)密碼的前兩位,只記得第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能
21、夠成功開機(jī)的概率是_.答案解析第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,所以總的基本事件的個數(shù)為15,密碼正確只有一種,概率為 .123456789101112132.若某公司從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用三人,這五人被錄用的機(jī)會均等,則甲或乙被錄用的概率為_答案解析由題意知,從五位大學(xué)畢業(yè)生中錄用三人,所有不同的可能結(jié)果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10種,其中“甲與乙均未被錄用”的所有不同的可能結(jié)果只有(丙,丁,戊)這
22、1種,故其對立事件“甲或乙被錄用”的可能結(jié)果有9種,所求概率P .123456789101112133.(2015廣東改編)已知5件產(chǎn)品中有2件次品,其余為合格品.現(xiàn)從這5件產(chǎn)品中任取2件,則恰有一件次品的概率為_.答案解析設(shè)3件合格品為A1,A2,A3,2件次品為B1,B2,從5件產(chǎn)品中任取2件有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10種.0.6123456789101112134.(2016無錫模擬)若從1,2,3,4這四個數(shù)中一次隨機(jī)取兩個數(shù),則取出的兩個數(shù)中一個
23、是奇數(shù)一個是偶數(shù)的概率為_.答案解析從四個數(shù)中隨機(jī)取兩個數(shù),基本事件有6個.其中一奇一偶的事件有4個:(1,2),(1,4),(3,2),(3,4),故所求的概率為 .123456789101112135.連擲兩次骰子分別得到點數(shù)m,n,則向量(m,n)與向量(1,1)的夾答案解析(m,n)(1,1)mnn.基本事件總共有6636(個),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,4),(6,1),(6,5),共1234515(個).角90的概率是_.123456789101112136.(2016南通模擬)在平面直角坐標(biāo)系中,從下列五
24、個點:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三個,則這三點能構(gòu)成三角形的概率是_.答案解析從5個點中取3個點,列舉得ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,共10個基本事件,而其中ACE,BCD兩種情況三點共線,其余8個均符合題意,故能構(gòu)成三角形的概率為 .123456789101112137.(2016蘇州高三一模)若連續(xù)兩次拋擲一枚質(zhì)地均勻的骰子(六個面上分別有數(shù)字1,2,3,4,5,6),則兩次向上的數(shù)字之和等于7的概率為_.連續(xù)拋擲骰子兩次,基本事件有36個.兩次向上的數(shù)字之和等于7的事件有6個:(1,6),(
25、2,5),(3,4),(4,3),(5,2),(6,1).故所求的概率為 .答案解析123456789101112138.(2016鎮(zhèn)江模擬)若箱子中有形狀、大小完全相同的3個紅球和2個白球,一次摸出2個球,則摸到的2個球顏色不同的概率為_.答案解析從5個球中摸出2個球,基本事件共有10個.摸到的2個球顏色不同的事件為:紅1,白1;紅1,白2;紅2,白1;紅2,白2;紅3,白1;紅3,白2,共6個.故所求的概率為 .123456789101112139.如下圖的莖葉圖是甲、乙兩人在4次模擬測試中的成績,其中一個數(shù)字被污損,則甲的平均成績不超過乙的平均成績的概率為_.答案解析0.3依題意,記題中
26、的被污損數(shù)字為x,若甲的平均成績不超過乙的平均成績,則有(8921)(53x5)0,x7,即此時x的可能取值是7,8,9,因此甲的平均成績不超過乙的平均成績的概率P 0.3.1234567891011121310.連續(xù)2次拋擲一枚骰子(六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6),記“兩次向上的數(shù)字之和等于m”為事件A,則P(A)最大時,m_.112,123,134,145,156,167,213,224,235,246,257,268,依次列出m的可能取值,知7出現(xiàn)次數(shù)最多.7答案解析1234567891011121311.設(shè)連續(xù)擲兩次骰子得到的點數(shù)分別為m,n,令平面向量a(m,n),b(
27、1,3).(1)求事件“ab”發(fā)生的概率;解答由題意知,m1,2,3,4,5,6,n1,2,3,4,5,6,故(m,n)所有可能的取法共36種.因為ab,所以m3n0,即m3n,有(3,1),(6,2),共2種,所以事件ab發(fā)生的概率為 .12345678910111213(2)求事件“|a|b|”發(fā)生的概率.解答由|a|b|,得m2n210,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6種,其概率為 .1234567891011121312.甲、乙兩人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙
28、后抽,抽出的牌不放回,各抽一張.(1)設(shè)(i,j)表示甲、乙抽到的牌的牌面數(shù)字(如果甲抽到紅桃2,乙抽到紅桃3,記為(2,3),寫出甲、乙兩人抽到的牌的所有情況;解答方片4用4表示,則甲、乙兩人抽到的牌的所有情況為(2,3),(2,4),(2,4),(3,2),(3,4),(3,4),(4,2),(4,3),(4,4),(4,2),(4,3),(4,4),共12種不同的情況.12345678910111213(2)若甲抽到紅桃3,則乙抽到的牌的牌面數(shù)字比3大的概率是多少?解答甲抽到3,乙抽到的牌只能是2,4,4,因此乙抽到的牌的牌面數(shù)字大于3的概率為 .12345678910111213(3)
29、甲、乙約定,若甲抽到的牌的牌面數(shù)字比乙大,則甲勝;否則,乙勝,你認(rèn)為此游戲是否公平?請說明理由.解答甲抽到的牌的牌面數(shù)字比乙大,有(3,2),(4,2),(4,3),(4,2),(4,3),共5種情況.12345678910111213*13.(2016北京海淀區(qū)期末)為了研究某種農(nóng)作物在特定溫度(要求最高溫度t滿足:27 t30 )下的生長狀況,某農(nóng)學(xué)家需要在10月份去某地進(jìn)行為期10天的連續(xù)觀察試驗.現(xiàn)有關(guān)于該地區(qū)歷年10月份日平均最高溫度和日平均最低溫度(單位:)的記錄如下:12345678910111213(1)根據(jù)本次試驗?zāi)康暮驮囼炛芷?,寫出農(nóng)學(xué)家觀察試驗的起始日期;農(nóng)學(xué)家觀察試驗的
30、起始日期為7日或8日.(2)設(shè)該地區(qū)今年10月上旬(10月1日至10月10日)的最高溫度的方差和最低溫度的方差分別為D1,D2,估計D1,D2的大?。?直接寫出結(jié)論即可)最高溫度的方差D1大. 解答解答解答12345678910111213(3)從10月份31天中隨機(jī)選擇連續(xù)3天,求所選3天每天日平均最高溫度值都在27,30之間的概率.解答12345678910111213設(shè)“連續(xù)3天平均最高溫度值都在27,30之間”為事件A,則基本事件空間可以設(shè)為(1,2,3),(2,3,4),(3,4,5),(29,30,31),共29個基本事件,由題圖可以看出,事件A包含10個基本事件,12345678910111213
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備采購常用的四種評標(biāo)方法
- 車間員工管理須知(應(yīng)知應(yīng)會)
- 某公司設(shè)備維護(hù)保養(yǎng)工作規(guī)程
- 某企業(yè)潔凈車間人員進(jìn)出管理規(guī)程
- 企業(yè)管理制度之5S管理的八個口訣
- 標(biāo)準(zhǔn)化班前會的探索及意義
- 某企業(yè)內(nèi)審員考試試題含答案
- 某公司環(huán)境保護(hù)考核管理制度
- 現(xiàn)場管理的定義
- 員工培訓(xùn)程序
- 管理制度之生產(chǎn)廠長的職責(zé)與工作標(biāo)準(zhǔn)
- 某公司各級專業(yè)人員環(huán)保職責(zé)
- 企業(yè)管理制度:5S推進(jìn)與改善工具
- XXX公司環(huán)境風(fēng)險排查及隱患整改制度
- 生產(chǎn)車間基層管理要點及建議