新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第二章】函數(shù)與基本初等函數(shù)I 學(xué)案6

上傳人:痛*** 文檔編號(hào):62412544 上傳時(shí)間:2022-03-14 格式:DOC 頁(yè)數(shù):9 大?。?24.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第二章】函數(shù)與基本初等函數(shù)I 學(xué)案6_第1頁(yè)
第1頁(yè) / 共9頁(yè)
新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第二章】函數(shù)與基本初等函數(shù)I 學(xué)案6_第2頁(yè)
第2頁(yè) / 共9頁(yè)
新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第二章】函數(shù)與基本初等函數(shù)I 學(xué)案6_第3頁(yè)
第3頁(yè) / 共9頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第二章】函數(shù)與基本初等函數(shù)I 學(xué)案6》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第二章】函數(shù)與基本初等函數(shù)I 學(xué)案6(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 學(xué)案6 函數(shù)的奇偶性與周期性 導(dǎo)學(xué)目標(biāo): 1.了解函數(shù)奇偶性、周期性的含義.2.會(huì)判斷奇偶性,會(huì)求函數(shù)的周期.3.會(huì)做有關(guān)函數(shù)單調(diào)性、奇偶性、周期性的綜合問(wèn)題. 自主梳理 1.函數(shù)奇偶性的定義 如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有______________,則稱f(x)為奇函數(shù);如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有____________,則稱f(x)為偶函數(shù). 2.奇偶函數(shù)的性質(zhì) (1)f(x)為奇函數(shù)?f(-x)=-f(x)?f(-x)+f(x)=____; f(x)為偶函數(shù)?f(x)=f(-x)=f(|x|)?f(x)-f(-x

2、)=____. (2)f(x)是偶函數(shù)?f(x)的圖象關(guān)于____軸對(duì)稱;f(x)是奇函數(shù)?f(x)的圖象關(guān)于_____ ___ 對(duì)稱. (3)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有________的單調(diào)性. 3.函數(shù)的周期性 (1)定義:如果存在一個(gè)非零常數(shù)T,使得對(duì)于函數(shù)定義域內(nèi)的任意x,都有f(x+T)=________,則稱f(x)為_(kāi)_______函數(shù),其中T稱作f(x)的周期.若T存在一個(gè)最小的正數(shù),則稱它為f(x)的________________. (2)性質(zhì): ①f(x+T)=f(x)常常寫(xiě)作f(x+)=f(x-). ②如果T是函

3、數(shù)y=f(x)的周期,則kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x). ③若對(duì)于函數(shù)f(x)的定義域內(nèi)任一個(gè)自變量的值x都有f(x+a)=-f(x)或f(x+a)=或f(x+a)=-(a是常數(shù)且a≠0),則f(x)是以______為一個(gè)周期的周期函數(shù). 自我檢測(cè) 1.已知函數(shù)f(x)=(m-1)x2+(m-2)x+(m2-7m+12)為偶函數(shù),則m的值是 (  ) A.1 B.2 C.3 D.4 2.(2011·茂名月考)如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最大值為5,那么f(x)在區(qū)間[-7,-3]上是

4、 (  ) A.增函數(shù)且最小值是-5 B.增函數(shù)且最大值是-5 C.減函數(shù)且最大值是-5 D.減函數(shù)且最小值是-5 3.函數(shù)y=x-的圖象 (  ) A.關(guān)于原點(diǎn)對(duì)稱 B.關(guān)于直線y=-x對(duì)稱 C.關(guān)于y軸對(duì)稱 D.關(guān)于直線y=x對(duì)稱 4.(2009·江西改編)已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=lo

5、g2(x+1),則f(-2 012)+f(2 011)的值為 (  ) A.-2 B.-1 C.1 D.2 5.(2011·開(kāi)封模擬)設(shè)函數(shù)f(x)=為奇函數(shù),則a=________. 探究點(diǎn)一 函數(shù)奇偶性的判定 例1 判斷下列函數(shù)的奇偶性. (1)f(x)=(x+1) ;(2)f(x)=x(+); (3)f(x)=log2(x+);(4)f(x)= 變式遷移1 判斷下列函數(shù)的奇偶性. (1)f(x)=x2-x3; (2)f(x)=+; (3)f(x)=. 探究點(diǎn)二 函數(shù)單調(diào)性與奇偶性的綜合應(yīng)用 例2

6、 函數(shù)y=f(x)(x≠0)是奇函數(shù),且當(dāng)x∈(0,+∞)時(shí)是增函數(shù),若f(1)=0,求不等式f[x(x-)]<0的解集. 變式遷移2 (2011·承德模擬)已知函數(shù)f(x)=x3+x,對(duì)任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x的取值范圍為_(kāi)_______. 探究點(diǎn)三 函數(shù)性質(zhì)的綜合應(yīng)用 例3 (2009·山東)已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),若方程f(x)=m(m>0),在區(qū)間[-8,8]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=________. 變式遷移3 

7、定義在R上的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x).若f(x)在區(qū)間[1,2]上是減函數(shù),則f(x)(  ) A.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是增函數(shù) B.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是減函數(shù) C.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是增函數(shù) D.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是減函數(shù) 轉(zhuǎn)化與化歸思想的應(yīng)用 例 (12分)函數(shù)f(x)的定義域?yàn)镈={x|x≠0},且滿足對(duì)于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值; (2)判斷f(x)的奇偶性并

8、證明你的結(jié)論; (3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍. 【答題模板】 解 (1)∵對(duì)于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2), ∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.[2分] (2)令x1=x2=-1,有f(1)=f(-1)+f(-1), ∴f(-1)=f(1)=0.[4分] 令x1=-1,x2=x有f(-x)=f(-1)+f(x), ∴f(-x)=f(x),∴f(x)為偶函數(shù).[6分] (3)依題設(shè)有f(4×4)=f(4)+f(4)=2, f(16×4)

9、=f(16)+f(4)=3,[7分] ∵f(3x+1)+f(2x-6)≤3, 即f((3x+1)(2x-6))≤f(64)[8分] ∵f(x)為偶函數(shù), ∴f(|(3x+1)(2x-6|)≤f(64).[10分] 又∵f(x)在(0,+∞)上是增函數(shù),f(x)的定義域?yàn)镈. ∴0<|(3x+1)(2x-6)|≤64.[11分] 解上式,得3

10、函數(shù),g(x)是否大于0不可而知,這樣就無(wú)法脫掉“f”,若能結(jié)合(2)中f(x)是偶函數(shù)的結(jié)論,則有f(g(x))=f(|g(x)|),又若能注意到f(x)的定義域?yàn)閧x|x≠0},這才能有|g(x)|>0,從而得出0<|g(x)|≤a,解之得x的范圍. 【易錯(cuò)點(diǎn)剖析】 在(3)中,由f(|(3x+1)·(2x-6)|)≤f(64)脫掉“f”的過(guò)程中,如果思維不縝密,不能及時(shí)回顧已知條件中函數(shù)的定義域中{x|x≠0},易出現(xiàn)0≤|(3x+1)(2x-6)|≤64,導(dǎo)致結(jié)果錯(cuò)誤. 1.正確理解奇函數(shù)和偶函數(shù)的定義,必須把握好兩個(gè)問(wèn)題:①定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或

11、偶函數(shù)的必要非充分條件;②f(-x)=-f(x)或f(-x)=f(x)是定義域上的恒等式. 2.奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù).為了便于判斷函數(shù)的奇偶性,有時(shí)需要先將函數(shù)進(jìn)行化簡(jiǎn),或應(yīng)用定義的等價(jià)形式:f(-x)=±f(x)?f(-x)±f(x)=0?=±1(f(x)≠0). 3.奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖象關(guān)于y軸對(duì)稱,反之也真.利用這一性質(zhì)可簡(jiǎn)化一些函數(shù)圖象的畫(huà)法,也可以利用它判斷函數(shù)的奇偶性. 4.關(guān)于函數(shù)周期性常用的結(jié)論:對(duì)于函數(shù)f(x),若有f(x+a)=-f(x)或f(x+a)=或f(x+a)=-(a為常數(shù)且a≠0),則f(x)的一個(gè)周期為2a (滿

12、分:75分) 一、選擇題(每小題5分,共25分) 1.(2011·吉林模擬)已知f(x)=ax2+bx是定義在[a-1,2a]上的偶函數(shù),那么a+b的值為(  ) A.- B. C. D.- 2.(2010·銀川一中高三年級(jí)第四次月考)已知定義域?yàn)閧x|x≠0}的函數(shù)f(x)為偶函數(shù),且f(x)在區(qū)間(-∞,0)上是增函數(shù),若f(-3)=0,則<0的解集為 (  ) A.(-3,0)∪(0,3) B.(-∞,-3)∪(0,3) C.(-∞,-3)∪(3,+∞) D.(-3,0)∪(3,+∞) 3.(20

13、11·鞍山月考)已知f(x)是定義在R上的偶函數(shù),并滿足f(x+2)=-,當(dāng)1≤x≤2時(shí),f(x)=x-2,則f(6.5)等于 (  ) A.4.5 B.-4.5 C.0.5 D.-0.5 4.(2010·山東)設(shè)f(x)為定義在R上的奇函數(shù).當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(-1)等于

14、 (  ) A.3 B.1 C.-1 D.-3 5.設(shè)函數(shù)f(x)滿足:①y=f(x+1)是偶函數(shù);②在[1,+∞)上為增函數(shù),則f(-1)與f(2)大小關(guān)系是 (  ) A.f(-1)>f(2) B.f(-1)

15、考)若函數(shù)f(x)=是奇函數(shù),則a+b=________. 7.(2011·咸陽(yáng)月考)設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)滿足f(x+3)=f(x),且f(1)>1,f(2)=,則m的取值范圍是________. 8.已知函數(shù)f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x-1),若f(2)=2,則f(2 010)的值為_(kāi)_______. 三、解答題(共38分) 9.(12分)(2011·汕頭模擬)已知f(x)是定義在[-6,6]上的奇函數(shù),且f(x)在[0,3]上是x的一次式,在[3,6]上是x的二次式,且當(dāng)3≤x≤6時(shí),f(x)≤f(5)=3,f(6)=

16、2,求f(x)的表達(dá)式. 10.(12分)設(shè)函數(shù)f(x)=x2-2|x|-1(-3≤x≤3) (1)證明f(x)是偶函數(shù); (2)畫(huà)出這個(gè)函數(shù)的圖象; (3)指出函數(shù)f(x)的單調(diào)區(qū)間,并說(shuō)明在各個(gè)單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù); (4)求函數(shù)的值域. 11.(14分)(2011·舟山調(diào)研)已知函數(shù)f(x)=x2+(x≠0,常數(shù)a∈R). (1)討論函數(shù)f(x)的奇偶性,并說(shuō)明理由; (2)若函數(shù)f(x)在[2,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍. 答案 自主梳理 1.f(-x)=-f(x) f(-x)=f(x)

17、2.(1)0 0 (2)y 原點(diǎn) (3)相反 3.(1)f(x) 周期 最小正周期 (2)③2a 自我檢測(cè) 1.B [因?yàn)閒(x)為偶函數(shù),所以奇次項(xiàng)系數(shù)為0,即m-2=0,m=2.] 2.A [奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,對(duì)稱區(qū)間上有相同的單調(diào)性.] 3.A [由f(-x)=-f(x),故函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱.] 4.C [f(-2 012)+f(2 011)=f(2 012)+f(2 011)=f(0)+f(1)=log21+log2(1+1)=1.] 5.-1 解析 ∵f(-1)=0,∴f(1)=2(a+1)=0, ∴a=-1.代入檢驗(yàn)f(x)=是奇函數(shù),故a=

18、-1. 課堂活動(dòng)區(qū) 例1 解題導(dǎo)引 判斷函數(shù)奇偶性的方法. (1)定義法:用函數(shù)奇偶性的定義判斷.(先看定義域是否關(guān)于原點(diǎn)對(duì)稱). (2)圖象法:f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,則f(x)為奇函數(shù);f(x)的圖象關(guān)于y軸對(duì)稱,則f(x)為偶函數(shù). (3)基本函數(shù)法:把f(x)變形為g(x)與h(x)的和、差、積、商的形式,通過(guò)g(x)與h(x)的奇偶性判定出f(x)的奇偶性. 解 (1)定義域要求≥0且x≠-1, ∴-1

19、(x). ∴f(x)是偶函數(shù). (3)函數(shù)定義域?yàn)镽. ∵f(-x)=log2(-x+) =log2=-log2(x+) =-f(x), ∴f(x)是奇函數(shù). (4)函數(shù)的定義域?yàn)?-∞,0)∪(0,+∞). 當(dāng)x<0時(shí),-x>0,則 f(-x)=-(-x)2-x=-(x2+x)=-f(x); 當(dāng)x>0時(shí),-x<0,則 f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x). ∴對(duì)任意x∈(-∞,0)∪(0,+∞)都有f(-x)=-f(x). 故f(x)為奇函數(shù). 變式遷移1 解 (1)由于f(-1)=2,f(1)=0,f(-1)≠f(1),f(-1)≠

20、-f(1),從而函數(shù)f(x)既不是奇函數(shù)也不是偶函數(shù). (2)f(x)的定義域?yàn)閧-1,1},關(guān)于原點(diǎn)對(duì)稱,又f(-1)=f(1)=0,f(-1)=-f(1)=0,∴f(x)既是奇函數(shù)又是偶函數(shù). (3)由得,f(x)定義域?yàn)閇-2,0)∪(0,2]. ∴定義域關(guān)于原點(diǎn)對(duì)稱, 又f(x)=,f(-x)=- ∴f(-x)=-f(x) ∴f(x)為奇函數(shù). 例2 解題導(dǎo)引 本題考查利用函數(shù)的單調(diào)性和奇偶性解不等式.解題的關(guān)鍵是利用函數(shù)的單調(diào)性、奇偶性化“抽象的不等式”為“具體的代數(shù)不等式”. 在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上,奇函數(shù)的單調(diào)性相同,偶函數(shù)的單調(diào)性相反. 解 ∵y=f(x)

21、為奇函數(shù),且在(0,+∞)上為增函數(shù), ∴y=f(x)在(-∞,0)上單調(diào)遞增, 且由f(1)=0得f(-1)=0. 若f[x(x-)]<0=f(1), 則即0

22、x-2, 此時(shí),只需即可,解得x∈(-2,). 例3 解題導(dǎo)引 解決此類抽象函數(shù)問(wèn)題,根據(jù)函數(shù)的奇偶性、周期性、單調(diào)性等性質(zhì),畫(huà)出函數(shù)的一部分簡(jiǎn)圖,使抽象問(wèn)題變得直觀、形象,有利于問(wèn)題的解決. -8 解析 因?yàn)槎x在R上的奇函數(shù),滿足f(x-4)=-f(x),所以f(4-x)=f(x).因此,函數(shù)圖象關(guān)于直線x=2對(duì)稱且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),所以函數(shù)是以8為周期的周期函數(shù).又因?yàn)閒(x)在區(qū)間[0,2]上是增函數(shù),所以f(x)在區(qū)間[-2,0]上也是增函數(shù),如圖所示,那么方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個(gè)不同的根x1,x2,

23、x3,x4,不妨設(shè)x1

24、的圖象大致為右圖,故<0的解集為(-3,0)∪(3,+∞).] 3.D [由f(x+2)=-, 得f(x+4)=-=f(x),那么f(x)的周期是4,得f(6.5)=f(2.5).因?yàn)閒(x)是偶函數(shù),則f(2.5)=f(-2.5)=f(1.5).而1≤x≤2時(shí),f(x)=x-2, ∴f(1.5)=-0.5.由上知:f(6.5)=-0.5.] 4.D [因?yàn)槠婧瘮?shù)f(x)在x=0有定義,所以f(0)=20+2×0+b=b+1=0,b=-1. ∴f(x)=2x+2x-1,f(1)=3, 從而f(-1)=-f(1)=-3.] 5.A [由y=f(x+1)是偶函數(shù),得到y(tǒng)=f(x)的圖

25、象關(guān)于直線x=1對(duì)稱,∴f(-1)=f(3). 又f(x)在[1,+∞)上為單調(diào)增函數(shù), ∴f(3)>f(2),即f(-1)>f(2).] 6.1 解析 ∵f(x)是奇函數(shù),且x∈R,∴f(0)=0,即a=0.又f(-1)=-f(1),∴b-1=-(1-1)=0,即b=1,因此a+b=1. 7.-11, ∴f(-1)=-f(1)<-1,∴<-1. 解得:-1

26、函數(shù),∴g(-x)=-g(x), ∴f(-x-1)=-f(x-1), 即f(x-1)=-f(-x-1), 用x+1替換x,得f(x)=-f(-x-2). 又f(x)是R上的偶函數(shù),∴f(x)=-f(x+2). ∴f(x)=f(x+4),即f(x)的周期為4. ∴f(2 010)=f(4×502+2)=f(2)=2. 9.解 由題意,當(dāng)3≤x≤6時(shí),設(shè)f(x)=a(x-5)2+3, ∵f(6)=2,∴2=a(6-5)2+3.∴a=-1. ∴f(x)=-(x-5)2+3(3≤x≤6).…………………………………………………………(3分) ∴f(3)=-(3-5)2+3=-1.

27、 又∵f(x)為奇函數(shù),∴f(0)=0. ∴一次函數(shù)圖象過(guò)(0,0),(3,-1)兩點(diǎn). ∴f(x)=-x(0≤x≤3).…………………………………………………………………(6分) 當(dāng)-3≤x≤0時(shí),-x∈[0,3], ∴f(-x)=-(-x)=x. 又f(-x)=-f(x),∴f(x)=-x. ∴f(x)=-x(-3≤x≤3).………………………………………………………………(9分) 當(dāng)-6≤x≤-3時(shí),3≤-x≤6, ∴f(-x)=-(-x-5)2+3=-(x+5)2+3. 又f(-x)=-f(x),∴f(x)=(x+5)2-3. ∴f(x)= 10.解 (1)f(-

28、x)=(-x)2-2|-x|-1 =x2-2|x|-1=f(x), 即f(-x)=f(x).∴f(x)是偶函數(shù).………………………………………………………(2分) (2)當(dāng)x≥0時(shí),f(x)=x2-2x-1=(x-1)2-2, 當(dāng)x<0時(shí),f(x)=x2+2x-1=(x+1)2-2, 即f(x)= 根據(jù)二次函數(shù)的作圖方法,可得函數(shù)圖象如下圖. ……………………………………(6分) (3)由(2)中函數(shù)圖象可知,函數(shù)f(x)的單調(diào)區(qū)間為[-3,-1],[-1,0],[0,1],[1,3]. f(x)在區(qū)間[-3,-1]和[

29、0,1]上為減函數(shù),在[-1,0],[1,3]上為增函數(shù).……………(8分) (4)當(dāng)x≥0時(shí),函數(shù)f(x)=(x-1)2-2的最小值為-2,最大值為f(3)=2; 當(dāng)x<0時(shí),函數(shù)f(x)=(x+1)2-2的最小值為-2,最大值為f(-3)=2; 故函數(shù)f(x)的值域?yàn)閇-2,2].……………………………………………………………(12分) 11.解 (1)當(dāng)a=0時(shí),f(x)=x2對(duì)任意x∈(-∞,0)∪(0,+∞), 有f(-x)=(-x)2=x2=f(x), ∴f(x)為偶函數(shù).…………………………………………………………………………(2分) 當(dāng)a≠0時(shí),f(x)=x2+(

30、x≠0,常數(shù)a∈R), 若x=±1時(shí),則f(-1)+f(1)=2≠0; ∴f(-1)≠-f(1),又f(-1)≠f(1) ∴函數(shù)f(x)既不是奇函數(shù),也不是偶函數(shù).……………………………………………(6分) 綜上所述,當(dāng)a=0時(shí),f(x)為偶函數(shù); 當(dāng)a≠0時(shí),f(x)為非奇非偶函數(shù).………………………………………………………(7分) (2)設(shè)2≤x14,即a4,∴x1x2(x1+x2)>16, ∴a的取值范圍為(-∞,16].…………………………………………………………(14分)

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!