《新版理數(shù)北師大版練習(xí):第三章 第六節(jié) 簡(jiǎn)單的三角恒等變形 Word版含解析》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新版理數(shù)北師大版練習(xí):第三章 第六節(jié) 簡(jiǎn)單的三角恒等變形 Word版含解析(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1
2、 1
課時(shí)作業(yè)
A組——基礎(chǔ)對(duì)點(diǎn)練
1.已知cos(-2θ)=-,則sin(+θ)的值等于( )
A. B.±
C.- D.
解析:因?yàn)閏os(-2θ)=cos(2θ-)=-cos(2θ-+π)=-cos[2(θ+)]=
-,即cos[2(θ+)]=,所以sin2(θ+)==,所以sin(θ+)=±,故選B.
答案:B
2.(20xx·開(kāi)封模擬)
3、設(shè)a=cos 6°-sin 6°,b=,c= ,則( )
A.c
4、的圖像,故選A.
答案:A
4.已知f(x)=2sin2x+2sin xcos x,則f(x)的最小正周期和一個(gè)單調(diào)遞減區(qū)間分別為( )
A.2π,[,] B.π,[,]
C.2π,[-,] D.π,[-,]
解析:f(x)=2sin2x+2sin xcos x=1-cos 2x+sin 2x=sin(2x-)+1,∴T==π,由+2kπ≤2x-≤+2kπ(k∈Z)得+kπ≤x≤+kπ(k∈Z),令k=0得f(x)在[,]上單調(diào)遞減,故選B.
答案:B
5.函數(shù)y=cos 2x+2sin x的最大值為( )
A. B.1
C. D.2
解析:y=cos 2x+2
5、sin x=1-2sin2x+2sin x=-22+,因?yàn)椋?≤sin x≤1,所以當(dāng)sin x=時(shí),函數(shù)取最大值,故ymax=.
答案:C
6.已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),則A= ,b= .
解析:由于2cos2x+sin 2x=1+cos 2x+sin 2x=sin(2x+)+1,所以A=,b=1.
答案: 1
7.化簡(jiǎn):= .
解析:===4sin α.
答案:4sin α
8.已知函數(shù)f(x)=(sin x+cos x)sin x,x∈R,則f(x)的最小值是 .
解析:f
6、(x)=sin2x+sin x·cos x=+sin 2x=sin+,當(dāng)sin=-1時(shí),f(x)min=.
答案:
9.已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f()=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f()=-,α∈(,π),求sin(α+)的值.
解析:(1)因?yàn)閒(x)=(a+2cos2x)cos(2x+θ)是奇函數(shù),而y1=a+2cos2x為偶函數(shù),所以y2=cos(2x+θ)為奇函數(shù),由θ∈(0,π),得θ=,所以f(x)=-sin 2x·(a+2cos2x),
由f()=0得-(a+1)=0,即a=-1.
(2
7、)由(1)得f(x)=-sin 4x,
因?yàn)閒()=-sin α=-,即sin α=,
又α∈(,π),從而cos α=-,
所以sin(α+)=sin αcos +cos αsin =.
10.已知a=(sin x,-cos x),b=(cos x,cos x),函數(shù)f(x)=a·b+.
(1)求f(x)的最小正周期,并求其圖像對(duì)稱(chēng)中心的坐標(biāo);
(2)當(dāng)0≤x≤時(shí),求函數(shù)f(x)的值域.
解析:(1)因?yàn)閒(x)=sin xcos x-cos2x+
=sin 2x-(cos 2x+1)+
=sin 2x-cos 2x=sin,
所以f(x)的最小正周期為π,令sin=0,
8、
得2x-=kπ,∴x=π+,k∈Z,
故所求對(duì)稱(chēng)中心的坐標(biāo)為(k∈Z).
(2)∵0≤x≤,∴-≤2x-≤,
∴-≤sin≤1,故f(x)的值域?yàn)?
B組——能力提升練
1.(20xx·石家莊質(zhì)檢)若函數(shù)f(x)=sin(2x+θ)+cos(2x+θ)(0<θ<π)的圖像關(guān)于(,0)對(duì)稱(chēng),則函數(shù)f(x)在[-,]上的最小值是( )
A.-1 B.-
C.- D.-
解析:f(x)=sin(2x+θ)+cos(2x+θ)=2sin(2x+θ+),則由題意,知f()=2sin(π+θ+)=0,又0<θ<π,所以θ=,所以f(x)=-2sin 2x,f(x)在[-,]上是減
9、函數(shù),所以函數(shù)f(x)在[-,]上的最小值為f()=-2sin=-,故選B.
答案:B
2.函數(shù)f(x)=(1+cos 2x)·sin2x(x∈R)是( )
A.最小正周期為π的奇函數(shù)
B.最小正周期為的奇函數(shù)
C.最小正周期為π的偶函數(shù)
D.最小正周期為的偶函數(shù)
解析: f(x)=(1+cos 2x)(1-cos 2x)=(1-cos22x)=sin22x=(1-cos 4x),f(-x)=(1-cos 4x)=f(x),因此函數(shù)f(x)是最小正周期為的偶函數(shù),選D.
答案:D
3.設(shè)α,β∈[0,π],且滿(mǎn)足sin αcos β-cos αsin β=1,則sin(2α
10、-β)+sin(α-2β)的取值范圍為( )
A.[-,1] B.[-1,]
C.[-1,1] D.[1,]
解析:∵sin αcos β-cos αsin β=1?sin(α-β)=1,α,β∈[0,π],∴α-β=,
∴?≤α≤π,
∴sin(2α-β)+sin(α-2β)=sin+sin(α-2α+π)=sin α+cos α=sin.
∵≤α≤π,∴≤α+≤π,
∴-1≤sin≤1,
即取值范圍是[-1,1],故選C.
答案:C
4.已知=k,0<θ<,則sin的值為( )
A.隨著k的增大而增大
B.有時(shí)隨著k的增大而增大,有時(shí)隨著k的增大而減小
C
11、.隨著k的增大而減小
D.是與k無(wú)關(guān)的常數(shù)
解析:==2sin θcos θ=sin 2θ,∵0<θ<,∴0
12、x)max=2.
答案:2
6.已知函數(shù)f(x)=Acos2(ωx+φ)+1的最大值為3,f(x)的圖像與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對(duì)稱(chēng)軸間的距離為2,則f(1)+f(2)+…+f(2 016)= .
解析:f(x)=cos(2ωx+2φ)++1.由相鄰兩條對(duì)稱(chēng)軸間的距離為2,知=2,得T=4=,∴ω=,由f(x)的最大值為3,得A=2.又f(x)的圖像過(guò)點(diǎn)(0,2),
∴cos 2φ=0,
∴2φ=kπ+(k∈Z),即φ=+(k∈Z),又0<φ<,∴φ=,
∴f(x)=cos+2=-sin+2.∴f(1)+f(2)+…+f(2 016)=(-1+2)
13、+
(0+2)+(1+2)+(0+2)+(-1+2)+…+(0+2)=2×2 016=4 032.
答案:4 032
7.已知函數(shù)f(x)=sin(3x+).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f()=cos(α+)cos 2α,求cos α-sin α的值.
解析:(1)因?yàn)楹瘮?shù)y=sin x的單調(diào)遞增區(qū)間為[-+2kπ,+2kπ],k∈Z.由-+2kπ≤3x+≤+2kπ,k∈Z,得-+≤x≤+,k∈Z.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[-+,+],k∈Z.
(2)由已知,有sin(α+)=cos(α+)(cos2α-sin2α),所以sin αco
14、s +cos αsin =(cos αcos -sin αsin )·(cos2α-sin2α),
即sin α+cos α=(cos α-sin α)2(sin α+cos α).
當(dāng)sin α+cos α=0時(shí),由α是第二象限角,知α=+2kπ,k∈Z.此時(shí),cos α-sin α=-.
當(dāng)sin α+cos α≠0時(shí),有(cos α-sin α)2=.
由α是第二象限角,知cos α-sin α<0,
此時(shí)cos α-sin α=-.
綜上所述,cos α-sin α=-或-.
8.已知函數(shù)f(x)=sin ωx-sin(ω>0).
(1)若f(x)在[0,π]上的值域?yàn)?,求ω的取值范圍?
(2)若f(x)在上單調(diào),且f(0)+f=0,求ω的值.
解析:f(x)=sin ωx-sin
=sin.
(1)由x∈[0,π]?ωx-∈,又f(x)在[0,π]上的值域?yàn)?,即最小值為,最大值?,則由正弦函數(shù)的圖像可知≤ωπ-≤,得≤ω≤.
∴ω的取值范圍是.
(2)因?yàn)閒(x)在上單調(diào),所以≥-0,則≥,即ω≤3,又ω>0,所以0<ω≤3,
由f(0)+f=0且f(x)在上單調(diào),得是f(x)圖像的對(duì)稱(chēng)中心,
∴-=kπ,k∈Z?ω=6k+2,k∈Z,
又0<ω≤3,所以ω=2.