《備戰(zhàn)高考數(shù)學(xué)理6年高考試題精解精析專(zhuān)題9直線和圓》由會(huì)員分享,可在線閱讀,更多相關(guān)《備戰(zhàn)高考數(shù)學(xué)理6年高考試題精解精析專(zhuān)題9直線和圓(22頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1.【2012高考真題重慶理3】任意的實(shí)數(shù)k,直線與圓的位置關(guān)系一定是
(1) 相離 B.相切 C.相交但直線不過(guò)圓心 D.相交且直線過(guò)圓心
2.【2012高考真題浙江理3】設(shè)a∈R ,則“a=1”是“直線l1:ax+2y=0與直線l2 :x+(a+1)y+4=0平行 的
A 充分不必要條件 B 必要不充分條件
C 充分必要條件 D 既不充分也不必要條件
【答案】A
【解析】當(dāng)時(shí),直線:,直線:,則//;若//,則有,即,解之得,或,所以不能得到。故選A.
4.【2012高考真題陜西理4】已知圓,過(guò)點(diǎn)的直線,則(
2、 )
A.與相交 B. 與相切 C.與相離 D. 以上三個(gè)選項(xiàng)均有可能
5.【2012高考真題天津理8】設(shè),若直線與圓相切,則m+n的取值范圍是
(A) (B)
(C) (D)
【答案】D
【解析】圓心為,半徑為1.直線與圓相切,所以圓心到直線的距離滿足,即,設(shè),即
,解得或
6.【2012高考江蘇12】(5分)在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值是 ▲ .
8.【2012高考真題湖南理
3、21】(本小題滿分13分)
在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
解法2 :由題設(shè)知,曲線上任意一點(diǎn)M到圓心的距離等于它到直線的距離,因此,曲線是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,故其方程為.
設(shè)過(guò)P所作的兩條切線的斜率分別為,則是方程①的兩個(gè)實(shí)根,故
4、 ②
由得 ③
【2011年高考試題】
一、選擇題:
1.(2011年高考江西卷理科9)若曲線:與曲線:
有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是
A.(,) B.(,0)∪(0,)
c.[,] D.(,)∪(,+)
二、填空題:
1.(2011年高考安徽卷理科15)在平面直角坐標(biāo)系中,如果與都是整數(shù),就稱(chēng)點(diǎn)為整點(diǎn),下列命題中正確的是_____________(寫(xiě)出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果與都是無(wú)理數(shù),則直線不經(jīng)過(guò)任何整點(diǎn)
③直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅
5、當(dāng)經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:與都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線
2.(2011年高考重慶卷理科15)設(shè)圓位于拋物線與直線所組成的封閉區(qū)域(包含邊界)內(nèi),則圓的半徑能取到的最大值為
三、解答題:
1. (2011年高考山東卷理科22)(本小題滿分14分)
已知?jiǎng)又本€與橢圓C: 交于P、Q兩不同點(diǎn),且△OPQ的面積=,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明和均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.
(2)
6、當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為
由題意知m,將其代入,得
,
綜上所述,結(jié)論成立。
(II)解法一:
(1)當(dāng)直線的斜率存在時(shí),
由(I)知
因此
(2)當(dāng)直線的斜率存在時(shí),由(I)知
解法二:
由(I)得
2. (2011年高考廣東卷理科19)設(shè)圓C與兩圓中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求C的圓心軌跡L的方程.
(2)已知點(diǎn)且P為L(zhǎng)上動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)P的坐標(biāo).
【解析】(1)解:設(shè)C的圓心的坐標(biāo)為,由題設(shè)條件知
化簡(jiǎn)得L的方程為
(2)解:過(guò)M,F(xiàn)的直線方程為,將其代入L的方程得
7、
解得
3.(2011年高考福建卷理科17)(本小題滿分13分)
已知直線l:y=x+m,m∈R。
(I)若以點(diǎn)M(2,0)為圓心的圓與直線l相切與點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;
(II)若直線l關(guān)于x軸對(duì)稱(chēng)的直線為,問(wèn)直線與拋物線C:x2=4y是否相切?說(shuō)明理由。
(1)當(dāng)時(shí),直線與拋物線C相切
(2)當(dāng),那時(shí),直線與拋物線C不相切。
綜上,當(dāng)m=1時(shí),直線與拋物線C相切;
當(dāng)時(shí),直線與拋物線C不相切。
4.(2011年高考上海卷理科23)(18分)已知平面上的線段及點(diǎn),在上任取一點(diǎn),線段長(zhǎng)度的最小值稱(chēng)為點(diǎn)到線段的距離,記作。
(1
8、)求點(diǎn)到線段的距離;
(2)設(shè)是長(zhǎng)為2的線段,求點(diǎn)集所表示圖形的面積;
(3)寫(xiě)出到兩條線段距離相等的點(diǎn)的集合,其中
,
是下列三組點(diǎn)中的一組。對(duì)于下列三組點(diǎn)只需選做一種,滿分分別是①2分,②
6分,③8分;若選擇了多于一種的情形,則按照序號(hào)較小的解答計(jì)分。
① 。
② 。
③ 。
解:⑴ 設(shè)是線段上一點(diǎn),則
,當(dāng)時(shí),。
【2010年高考試題】
(2010江西理數(shù))8.直線與圓相交于M,N兩點(diǎn),若,則k的取值范圍是
A. B. C. D.
【答案】A
1. (2010安徽理數(shù))9、動(dòng)點(diǎn)在圓上繞坐標(biāo)
9、原點(diǎn)沿逆時(shí)針?lè)较騽蛩傩D(zhuǎn),12秒旋轉(zhuǎn)一周。已知時(shí)間時(shí),點(diǎn)的坐標(biāo)是,則當(dāng)時(shí),動(dòng)點(diǎn)的縱坐標(biāo)關(guān)于(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是
A、 B、 C、 D、和
9.D
【解析】畫(huà)出圖形,設(shè)動(dòng)點(diǎn)A與軸正方向夾角為,則時(shí),每秒鐘旋轉(zhuǎn),在上,在上,動(dòng)點(diǎn)的縱坐標(biāo)關(guān)于都是單調(diào)遞增的。
【方法技巧】由動(dòng)點(diǎn)在圓上繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较騽蛩傩D(zhuǎn),可知與三角函數(shù)的定義類(lèi)似,由12秒旋轉(zhuǎn)一周能求每秒鐘所轉(zhuǎn)的弧度,畫(huà)出單位圓,很容易看出,當(dāng)t在變化時(shí),點(diǎn)的縱坐標(biāo)關(guān)于(單位:秒)的函數(shù)的單調(diào)性的變化,從而得單調(diào)
遞增區(qū)間.
(2010全國(guó)卷2理數(shù))(16)已知球的半徑為4,圓與圓為該球的兩個(gè)小圓,為圓與圓
10、的公共弦,.若,則兩圓圓心的距離 .
(2010四川理數(shù))(14)直線與圓相交于A、B兩點(diǎn),則 .
(2010廣東理數(shù))12.已知圓心在x軸上,半徑為的圓O位于y軸左側(cè),且與直線x+y=0相切,則圓O的方程是
12..設(shè)圓心為,則,解得.
(2010山東理數(shù))
【解析】由題意,設(shè)所求的直線方程為,設(shè)圓心坐標(biāo)為,則由題意知:
,解得或-1,又因?yàn)閳A心在x軸的正半軸上,所以,故圓心坐標(biāo)為(3,0),因?yàn)閳A心(3,0)在所求的直線上,所以有,即,故所求的直線方程為
。
【命題意圖】本題考查了直線的方程、點(diǎn)到直線的距離、直線與
11、圓的關(guān)系,考查了同學(xué)們解決直線與圓問(wèn)題的能力。
(2010湖南理數(shù))
2. (2010江蘇卷)9、在平面直角坐標(biāo)系xOy中,已知圓上有且僅有四個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是______▲_____
[解析]考查圓與直線的位置關(guān)系。 圓半徑為2,
圓心(0,0)到直線12x-5y+c=0的距離小于1,,的取值范圍是(-13,13)。
【2009年高考試題】
4.(2009·遼寧文、理)已知圓C與直線x-y=0 及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為
(A) (B)
(C) (D)
12、
16.(2009·18)(本小題滿分16分)在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。
化簡(jiǎn)得:
關(guān)于的方程有無(wú)窮多解,有:
解之得:點(diǎn)P坐標(biāo)為或。
【2008年高考試題】
【2007年高考試題】
無(wú)
希望對(duì)大家有所幫助,多謝您的瀏覽!