新版浙江高考數(shù)學(xué)理二輪專題訓(xùn)練:第1部分 專題七 第1講 坐標(biāo)系與參數(shù)方程選修44

上傳人:痛*** 文檔編號:63977112 上傳時間:2022-03-20 格式:DOC 頁數(shù):7 大小:288.50KB
收藏 版權(quán)申訴 舉報 下載
新版浙江高考數(shù)學(xué)理二輪專題訓(xùn)練:第1部分 專題七 第1講 坐標(biāo)系與參數(shù)方程選修44_第1頁
第1頁 / 共7頁
新版浙江高考數(shù)學(xué)理二輪專題訓(xùn)練:第1部分 專題七 第1講 坐標(biāo)系與參數(shù)方程選修44_第2頁
第2頁 / 共7頁
新版浙江高考數(shù)學(xué)理二輪專題訓(xùn)練:第1部分 專題七 第1講 坐標(biāo)系與參數(shù)方程選修44_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版浙江高考數(shù)學(xué)理二輪專題訓(xùn)練:第1部分 專題七 第1講 坐標(biāo)系與參數(shù)方程選修44》由會員分享,可在線閱讀,更多相關(guān)《新版浙江高考數(shù)學(xué)理二輪專題訓(xùn)練:第1部分 專題七 第1講 坐標(biāo)系與參數(shù)方程選修44(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1

2、 1 考 點 考 情 極坐標(biāo)方程及其應(yīng)用   坐標(biāo)系與參數(shù)方程是新課標(biāo)選考內(nèi)容之一,高考對本講內(nèi)容的考查主要有: (1)直線與圓的極坐標(biāo)方程以及極坐標(biāo)與直角坐標(biāo)系的互化,如廣東T14,新課標(biāo)全國卷ⅠT23. (2)直線、圓與圓錐曲線的參數(shù)方程以及參數(shù)方程與普通方程的互化. 參數(shù)方程及其應(yīng)用 極坐標(biāo)與參數(shù)方程的綜合應(yīng)用 1.(20xx·新課標(biāo)全國卷

3、Ⅰ)已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sin θ . (1)把C1的參數(shù)方程化為極坐標(biāo)方程; (2)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π). 解:(1)將消去參數(shù)t,化為普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0. 將代入x2+y2-8x-10y+16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的極坐標(biāo)方程為ρ2-8ρcos θ-10ρsin θ+16=0. (2)C2的普通方程為x2+y2-2y=0. 由解得或 所

4、以C1與C2交點的極坐標(biāo)分別為,. 2.(20xx·福建高考)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點A的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且點A在直線l上. (1)求a的值及直線l的直角坐標(biāo)方程; (2)圓C的參數(shù)方程為(α為參數(shù)),試判斷直線l與圓C的位置關(guān)系. 解:(1)由點A在直線ρcos=a上, 可得a=. 所以直線l的方程可化為ρcos θ+ρsin θ=2, 從而直線l的直角坐標(biāo)方程為x+y-2=0. (2)由已知得圓C的直角坐標(biāo)方程為(x-1)2+y2=1, 所以圓C的圓心為(1,0),半徑r=1, 因為圓心C

5、到直線l的距離d==<1, 所以直線l與圓C相交. 1.直角坐標(biāo)與極坐標(biāo)的互化 把直角坐標(biāo)系的原點作為極點,x軸正半軸作為極軸,并在兩坐標(biāo)系中取相同的長度單位.設(shè)M是平面內(nèi)任意一點,它的直角坐標(biāo)是(x,y),極坐標(biāo)是(ρ,θ),則 2.圓的極坐標(biāo)方程 若圓心為M(ρ0,θ0),半徑為r,則圓的方程為:ρ2-2ρ0ρcos(θ-θ0)+ρ-r2=0. 幾個特殊位置的圓的極坐標(biāo)方程: (1)當(dāng)圓心位于極點,半徑為r:ρ=r; (2)當(dāng)圓心位于M(a,0),半徑為a:ρ=2acos θ; (3)當(dāng)圓心位于M,半徑為a:ρ=2asin θ. 3.直線的極坐標(biāo)方程 若直線過點M

6、(ρ0,θ0),且極軸到此直線的角為α,則它的方程為:ρsin(θ-α)=ρ0sin(θ0-α). 幾個特殊位置的直線的極坐標(biāo)方程: (1)直線過極點:θ=θ0和θ=π-θ0; (2)直線過點M(a,0)且垂直于極軸:ρcos θ=a; (3)直線過M且平行于極軸:ρsin θ=b. 4.幾種常見曲線的參數(shù)方程 (1)圓 以O(shè)′(a,b)為圓心,r為半徑的圓的參數(shù)方程是其中α是參數(shù). 當(dāng)圓心在(0,0)時,方程為其中α是參數(shù). (2)橢圓 橢圓+=1(a>b>0)的參數(shù)方程是其中φ是參數(shù). 橢圓+=1(a>b>0)的參數(shù)方程是其中φ是參數(shù). (3)直線 經(jīng)過點P0(x

7、0,y0),傾斜角為α的直線的參數(shù)方程是其中t是參數(shù). 熱點一 極坐標(biāo)方程及其應(yīng)用  [例1] (1)(20xx·北京高考改編)在極坐標(biāo)系中,求點到直線ρsin θ=2的距離. (2)已知點P(1+cos α,sin α),參數(shù)α∈[0,π],點Q在曲線C:ρ=上. ①求點P的軌跡方程和曲線C的直角坐標(biāo)方程; ②求點P與點Q之間距離的最小值. [自主解答] (1)極坐標(biāo)系中點對應(yīng)的直角坐標(biāo)為(,1),直線ρsin θ=2對應(yīng)的直線方程為y=2,所以點到直線的距離為1. (2)①由消去α, 得點P的軌跡方程為(x-1)2+y2=1(y≥0), 又由ρ=,得ρ=,

8、 所以ρsin θ+ρcos θ=9. 所以曲線C的直角坐標(biāo)方程為x+y=9. ②因為半圓(x-1)2+y2=1(y≥0)的圓心(1,0)到直線x+y=9的距離為4, 所以|PQ|min=4-1. ——————————規(guī)律·總結(jié)—————————————————————— 研究極坐標(biāo)方程往往要與直角坐標(biāo)方程進行相互轉(zhuǎn)化.當(dāng)條件涉及到角度和到定點距離時,引入極坐標(biāo)系會對問題的解決帶來很大方便. 1.在極坐標(biāo)系Ox中,已知點A,B0<α<,求過AB的中點,且與OA垂直的直線的極坐標(biāo)方程. 解:設(shè)AB的中點為C, 則|OC|=cos , 過C作CD⊥OA于D. 則|O

9、D|=|OC|·cos =cos2 . 設(shè)M(ρ,θ)是直線CD上的任意一點,則∠MOD=θ-, 在△MOD中,|OD|=|OM|cos, 即cos2 =ρcos, 所以直線CD的極坐標(biāo)方程為cos2 =ρcos. 熱點二 參數(shù)方程及其應(yīng)用  [例2] (20xx·鄭州模擬)已知直線C1:(t為參數(shù)),曲線C2:(θ為參數(shù)). (1)當(dāng)α=時,求C1與C2的交點坐標(biāo); (2)過坐標(biāo)原點O作C1的垂線,垂足為A,P為OA的中點,當(dāng)α變化時,求P點軌跡的參數(shù)方程,并指出它是什么曲線? [自主解答] (1)當(dāng)α=時,C1的普通方程為y=(x-1),C2的普通方程為x2+y2=

10、1, 聯(lián)立方程組 解得C1與C2的交點坐標(biāo)為(1,0),. (2)C1的普通方程為xsin α-ycos α-sin α=0, A點坐標(biāo)為(sin2α,-sin αcos α), 故當(dāng)α變化時,P點軌跡的參數(shù)方程為(α為參數(shù)), P點軌跡的普通方程為2+y2=, 故P點的軌跡是圓心為,半徑為的圓. ——————————規(guī)律·總結(jié)——————————————————————— 在解答參數(shù)方程的有關(guān)問題時常用的方法 (1)將參數(shù)方程化為普通方程,再利用相關(guān)知識解決,注意消參后x,y的取值范圍. (2)觀察參數(shù)方程有什么幾何意義,利用參數(shù)的幾何意義解題. 2.已知

11、直線l的參數(shù)方程為(t為參數(shù)),P是橢圓+y2=1上任意一點,求點P到直線l的距離的最大值. 解:由于直線l的參數(shù)方程為(t為參數(shù)), 故直線l的普通方程為x+2y=0. 因為P為橢圓+y2=1上的任意一點, 故可設(shè)P(2cos θ,sin θ),其中θ∈R. 因此點P到直線l的距離是 d==, 所以當(dāng)θ=kπ+,k∈Z時,d取得最大值. 熱點三 極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用  [例3] (20xx·遼寧高考)在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sin θ,ρcos=2. (1)求C1與C2交點的極

12、坐標(biāo); (2)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點.已知直線PQ的參數(shù)方程為(t∈R為參數(shù)),求a,b的值. [自主解答] (1)圓C1的直角坐標(biāo)方程為x2+(y-2)2=4, 直線C2的直角坐標(biāo)方程為x+y-4=0. 解得 所以C1與C2交點的極坐標(biāo)為,. 注:極坐標(biāo)系下點的表示不唯一. (2)由(1)可得,P點與Q點的直角坐標(biāo)分別為(0,2),(1,3). 故直線PQ的直角坐標(biāo)方程為x-y+2=0, 由參數(shù)方程可得y=x-+1. 所以解得a=-1,b=2. ——————————規(guī)律·總結(jié)——————————————————————— 對于同時含有極坐標(biāo)

13、方程和參數(shù)方程的題目,可先同時將它們轉(zhuǎn)化為直角坐標(biāo)方程求解. 3.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),以原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin=4. (1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程; (2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值,并求此時點P的坐標(biāo). 解:(1)對于曲線C1有?2+y2=cos2α+sin2α=1.即C1的普通方程為+y2=1. 對于曲線C2有ρsin=ρ(cos θ+sin θ)=4?ρcos θ+ρsin θ=8?x+y-8=0,所以C2的直角坐標(biāo)方程為x+y-8=0. (2)顯然橢圓C1與直線C2無公共點,橢圓上點P(cos α,sin α)到直線x+y-8=0的距離為 d==, 當(dāng)sin=1時,d取最小值為3,此時點P的坐標(biāo)為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!