高三數(shù)學(xué)北師大版文一輪教師用書:第9章 第5節(jié) 第1課時 橢圓及其性質(zhì) Word版含解析

上傳人:痛*** 文檔編號:64447621 上傳時間:2022-03-21 格式:DOC 頁數(shù):15 大?。?80.50KB
收藏 版權(quán)申訴 舉報 下載
高三數(shù)學(xué)北師大版文一輪教師用書:第9章 第5節(jié) 第1課時 橢圓及其性質(zhì) Word版含解析_第1頁
第1頁 / 共15頁
高三數(shù)學(xué)北師大版文一輪教師用書:第9章 第5節(jié) 第1課時 橢圓及其性質(zhì) Word版含解析_第2頁
第2頁 / 共15頁
高三數(shù)學(xué)北師大版文一輪教師用書:第9章 第5節(jié) 第1課時 橢圓及其性質(zhì) Word版含解析_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三數(shù)學(xué)北師大版文一輪教師用書:第9章 第5節(jié) 第1課時 橢圓及其性質(zhì) Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)北師大版文一輪教師用書:第9章 第5節(jié) 第1課時 橢圓及其性質(zhì) Word版含解析(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第五節(jié) 橢圓 第1課時 橢圓及其性質(zhì) [最新考綱] 1.了解橢圓的實際背景,了解橢圓在刻畫現(xiàn)實世界和解決實際問題中的作用.2.掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單幾何性質(zhì). (對應(yīng)學(xué)生用書第153頁) 1.橢圓的定義 (1)我們把平面內(nèi)到兩個定點F1,F(xiàn)2的距離之和等于常數(shù)(大于|F1F2|)的點的集合叫作橢圓.這兩定點F1,F(xiàn)2叫作橢圓的焦點,兩個焦點F1,F(xiàn)2間的距離叫作橢圓的焦距. (2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c為常數(shù)且a>0,c>0. ①當(dāng)2a>|F1F2|時,M點的軌跡為橢圓; ②當(dāng)2a=|F1F

2、2|時,M點的軌跡為線段F1F2; ③當(dāng)2a<|F1F2|時,M點的軌跡不存在. 2.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì) 標(biāo)準(zhǔn)方程 +=1(a>b>0) +=1(a>b>0) 圖形 性質(zhì) 范圍 -a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a 對稱性 對稱軸:坐標(biāo)軸;對稱中心:原點 頂點坐標(biāo) A1(-a,0),A2(a,0),B1(0,-b),B2(0,b) A1(0,-a),A2(0,a),B1(-b,0),B2(b,0) 焦點坐標(biāo) F1(-c,0),F(xiàn)2(c,0) F1(0,-c),F(xiàn)2(0,c) 半軸長 長半軸長為a,短半軸長為b 離心率

3、e=,且e∈(0,1) a,b,c的關(guān)系 c2=a2-b2 1.過橢圓焦點垂直于長軸的弦是最短的弦,長為,過焦點最長弦為長軸. 2.過原點最長弦為長軸長2a,最短弦為短軸長2b. 3.與橢圓+=1(a>b>0)有公共焦點的橢圓方程為+=1(λ>-b2). 4.焦點三角形:橢圓上的點P(x0,y0)與兩焦點F1,F(xiàn)2構(gòu)成的△PF1F2叫做焦點三角形.若∠F1PF2=θ,則 (1)|PF1|+|PF2|=2a. (2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cos θ. (3)S△PF1F2=|PF1||PF2|·sin θ,當(dāng)|y0|=b,即P為短軸端點

4、時,S△PF1F2取最大值,為bc. (4)焦點三角形的周長為2(a+c). (5)已知過焦點F1的弦AB,則△ABF2的周長為4a. 一、思考辨析(正確的打“√”,錯誤的打“×”) (1)平面內(nèi)到兩個定點F1,F(xiàn)2的距離之和等于常數(shù)的點的軌跡是橢圓. (  ) (2)橢圓的離心率e越大,橢圓就越圓. (  ) (3)+=1(a≠b)表示焦點在y軸上的橢圓. (  ) (4)+=1(a>b>0)與+=1(a>b>0)的焦距相等. (  ) [答案](1)× (2)× (3)× (4)√ 二、教材改編 1.設(shè)P是橢圓+=1上的點,若F1,F(xiàn)2是橢圓的兩個焦點,則|PF

5、1|+|PF2|等于(  ) A.4 B.5     C.8     D.10 D [依橢圓的定義知:|PF1|+|PF2|=2×5=10.] 2.已知中心在原點的橢圓C的右焦點為F(1,0),離心率等于,則橢圓C的方程是(  ) A.+=1 B.+=1 C.+=1 D.+=1 D [設(shè)橢圓的標(biāo)準(zhǔn)方程為+=1(a>b>0). 因為橢圓的一個焦點為F(1,0),離心率e=,所以解得 故橢圓C的標(biāo)準(zhǔn)方程為+=1.] 3.過點A(3,-2)且與橢圓+=1有相同焦點的橢圓的方程為(  ) A.+=1 B.+=1 C.+=1 D.+=1 A [設(shè)所求橢圓的方程為+=1(λ>-4

6、),則有+=1,解得λ=6,故所求橢圓方程為+=1.] 4.已知點P是橢圓+=1上y軸右側(cè)的一點,且以點P及焦點F1,F(xiàn)2為頂點的三角形的面積等于1,則點P的坐標(biāo)為________. 或 [設(shè)P(xP,yP),xP>0,由題意知|F1F2|=2. 則S△PF1F2=×|F1F2|×|yP|=1,解得|yP|=1. 代入橢圓的方程,得+=1,解得x=, 因此點P的坐標(biāo)為或.] (對應(yīng)學(xué)生用書第154頁) ⊙考點1 橢圓的定義及應(yīng)用  利用定義求方程、焦點三角形及最值的方法 求方程 通過對題設(shè)條件分析、轉(zhuǎn)化后,能夠明確動點P滿足橢圓的定義,便可直接求解其軌跡方程 求焦點三

7、角形 利用定義求焦點三角形的周長和面積.解決焦點三角形問題常利用橢圓的定義、正弦定理或余弦定理.其中|PF1|+|PF2|=2a兩邊平方是常用技巧 求最值 抓住|PF1|與|PF2|之和為定值,可聯(lián)系到基本不等式求|PF1|·|PF2|的最值;利用定義|PF1|+|PF2|=2a轉(zhuǎn)化或變形,借助三角形性質(zhì)求最值 (1)已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,動圓在圓C1內(nèi)部且和圓C1相內(nèi)切,和圓C2相外切,則動圓圓心M的軌跡方程為(  ) A.-=1      B.+=1 C.-=1 D.+=1 (2)如圖,橢圓+=1(a>2)的左、右焦點分別為F

8、1,F(xiàn)2,點P是橢圓上的一點,若∠F1PF2=60°,那么△PF1F2的面積為(  ) A. B. C. D. (3)設(shè)F1,F(xiàn)2分別是橢圓+=1的左、右焦點,P為橢圓上任意一點,點M的坐標(biāo)為(6,4),則|PM|-|PF1|的最小值為________. (1)D (2)D (3)-5 [(1)設(shè)圓M的半徑為r,則|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,所以M的軌跡是以C1,C2為焦點的橢圓,且 2a=16,2c=8,故所求的軌跡方程為+=1. (2)由題意知|PF1|+|PF2|=2a,|F1F2|2=4a2-16, 由余弦定理得 4a2-

9、16=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°, 即4a2-16=(|PF1|+|PF2|)2-3|PF1||PF2|, ∴|PF1||PF2|=, ∴S△PF1F2=|PF1||PF2|sin 60°=,故選D. (3)由題意知,點M在橢圓外部,且|PF1|+|PF2|=10,則|PM|-|PF1|=|PM|-(10-|PF2|)=|PM|+|PF2|-10≥|F2M|-10.(當(dāng)且僅當(dāng)點P,M,F(xiàn)2三點共線時等號成立) 又F2(3,0),則|F2M|==5. ∴|PM|-|PF1|≥-5,即|PM|-|PF1|的最小值為-5.]  解答本例T(3)的關(guān)

10、鍵是差式(|PM|-|PF1|)轉(zhuǎn)化為和式|PM|+|PF2|-10.而轉(zhuǎn)化的依據(jù)為|PF1|+|PF2|=2a.  1.已知A(-1,0),B是圓F:x2-2x+y2-11=0(F為圓心)上一動點,線段AB的垂直平分線交BF于P,則動點P的軌跡方程為(  ) A.+=1 B.-=1 C.-=1 D.+=1 D [由題意得|PA|=|PB|, ∴|PA|+|PF|=|PB|+|PF|=r=2>|AF|=2, ∴點P的軌跡是以A,F(xiàn)為焦點的橢圓,且a=,c=1,∴b=, ∴動點P的軌跡方程為+=1,故選D.] 2.已知橢圓C:+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心

11、率為,過F2的直線l交C于A,B兩點,若△AF1B的周長為12,則橢圓C的標(biāo)準(zhǔn)方程為(  ) A.+y2=1 B.+=1 C.+=1 D.+=1 D [由橢圓的定義,知|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,所以△AF1B的周長為|AF1|+|AF2|+|BF1|+|BF2|=4a=12,所以a=3.因為橢圓的離心率e==,所以c=2,所以b2=a2-c2=5,所以橢圓C的方程為+=1,故選D.] 3.已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的兩個焦點,P為橢圓C上的一點,且PF1⊥PF2,若△PF1F2的面積為9,則b=________. 3 [設(shè)|PF1|

12、=r1,|PF2|=r2,則 所以2r1r2=(r1+r2)2-(r+r)=4a2-4c2=4b2,所以S△PF1F2=r1r2=b2=9,所以b=3.] ⊙考點2 橢圓的標(biāo)準(zhǔn)方程  求橢圓標(biāo)準(zhǔn)方程的兩種方法 (1)定義法.根據(jù)橢圓的定義,確定a2,b2的值,結(jié)合焦點位置寫出橢圓方程. (2)待定系數(shù)法.一般步驟如下: (1)一個橢圓的中心在原點,焦點F1,F(xiàn)2在x軸上,P(2,)是橢圓上一點,且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓的方程為________. (2)已知橢圓的中心在原點,以坐標(biāo)軸為對稱軸,且經(jīng)過兩點P1(,1),P2(,),則橢圓的方程為___

13、_____. (3)[一題多解]與橢圓+=1有相同離心率且經(jīng)過點P(2,-)的橢圓方程為________. (1)+=1 (2)+=1 (3)+=1或+=1 [(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為+=1(a>b>0),由點P(2,)在橢圓上知+=1. 又|PF1|,|F1F2|,|PF2|成等差數(shù)列,則|PF1|+|PF2|=2|F1F2|,即2a=2×2c,=.又c2=a2-b2,聯(lián)立得a2=8,b2=6,故橢圓方程為+=1. (2)設(shè)橢圓方程為mx2+ny2=1(m>0,n>0且m≠n). ∵橢圓經(jīng)過點P1,P2,∴點P1,P2的坐標(biāo)適合橢圓方程,則 由①②兩式聯(lián)立,解得 ∴所求橢圓的方

14、程為+=1. (3)法一:因為e== ===, 若焦點在x軸上,設(shè)所求橢圓方程為+=1(m>n>0), 則1-=,從而=,=.又+=1,所以m2=8,n2=6.所以橢圓方程為+=1. 若焦點在y軸上,設(shè)橢圓方程為+=1(h>k>0), 則+=1,且=, 解得h2=,k2=. 故所求方程為+=1,故橢圓的方程為+=1或+=1. 法二:若焦點在x軸上,設(shè)所求橢圓方程為+=t(t>0),將點P(2,-)代入,得t=+=2.故所求方程為+=1;若焦點在y軸上,設(shè)方程為+=λ(λ>0), 代入點P(2,-),得λ=,故所求方程為+=1. 故橢圓的方程為+=1或+=1.]  離心率

15、相同的兩個橢圓焦點可能在不同的軸上,因此要分類求解,如本例T(3). [教師備選例題] 1.已知橢圓的中心在原點,焦點在x軸上,長、短半軸長之和為10,焦距為4,則橢圓的標(biāo)準(zhǔn)方程為(  ) A.+=1     B.+=1 C.+=1 D.+=1 C [由長、短半軸長之和為10,焦距為4,可得a+b=10,2c=4,∴c=2.又a2=b2+c2,∴a2=36,b2=16.∵焦點在x軸上,∴所求橢圓方程為+=1.故選C.] 2.已知中心在坐標(biāo)原點的橢圓過點A(-3,0),且離心率e=,則橢圓的標(biāo)準(zhǔn)方程為________. +=1或+=1 [若焦點在x軸上,由題知a=3,因為橢圓的離心

16、率e=,所以c=,b=2,所以橢圓方程是+=1.若焦點在y軸上,則b=3,a2-c2=9,又離心率e==,解得a2=,所以橢圓方程是+=1.]  1.已知a,b∈R,則“a>0>b”是“-=1表示橢圓”的(  ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 B [當(dāng)a>0>b且a=-b時,-=1表示圓,充分性不成立;當(dāng)-=1表示橢圓時,a>0>b且a≠-b,必要性成立,所以“a>0>b”是“-=1表示橢圓”的必要不充分條件,故選B.] 2.已知橢圓C的中心在原點,焦點在x軸上,且短軸長為2,離心率為,則該橢圓的標(biāo)準(zhǔn)方程為(  ) A.+y2=1

17、B.+y2=1 C.+y2=1 D.+x2=1 A [由題意設(shè)橢圓方程為+=1(a>b>0),則2b=2,故b=1.又=,a2=b2+c2,∴a2=5.∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1.故選A.] ⊙考點3 橢圓的幾何性質(zhì)  求橢圓離心率的值(或范圍) 1.求橢圓離心率的方法 (1)定義法:根據(jù)條件求出a,c,直接利用公式e=求解. (2)方程法:根據(jù)條件得到關(guān)于a,b,c的齊次等式(不等式),結(jié)合b2=a2-c2轉(zhuǎn)化為關(guān)于a,c的齊次等式(不等式),然后將該齊次等式(不等式)兩邊同時除以a或a2轉(zhuǎn)化為關(guān)于e或e2的方程(不等式),解方程(不等式)即可得e(e的取值范圍).

18、2.求橢圓離心率范圍的兩種方法 方法 解法 適合題型 幾何法 利用橢圓的幾何性質(zhì),設(shè)P(x0,y0)為橢圓+=1(a>b>0)上一點,則|x0|≤a,a-c≤|PF1|≤a+c等,建立不等關(guān)系,或者根據(jù)幾何圖形的臨界情況建立不等關(guān)系 題設(shè)條件有明顯的幾何關(guān)系 直接法 根據(jù)題目中給出的條件或根據(jù)已知條件得出不等關(guān)系,直接轉(zhuǎn)化為含有a,b,c的不等關(guān)系式 題設(shè)條件直接有不等關(guān)系 (1)(2018·全國卷Ⅱ)已知F1,F(xiàn)2是橢圓C的兩個焦點,P是C上的一點.若PF1⊥PF2,且∠PF2F1=60°,則C的離心率為(  ) A.1-    B.2- C. D.-1 (2)已知

19、F1,F(xiàn)2分別是橢圓+=1(a>b>0)的左、右焦點,過F1且垂直于x軸的直線與橢圓交于A,B上下兩點,若△ABF2是銳角三角形,則該橢圓的離心率e的取值范圍是(  ) A.(0,-1) B.(-1,1) C.(0,-1) D.(-1,1) (1)D (2)B [(1)由題設(shè)知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,所以|PF2|=c,|PF1|=c.由橢圓的定義得|PF1|+|PF2|=2a,即c+c=2a,所以(+1)c=2a,故橢圓C的離心率e===-1.故選D. (2)∵F1,F(xiàn)2分別是橢圓+=1(a>0,b>0)的左、右焦點,過F1且垂直于x軸的直線與

20、橢圓交于A,B上下兩點,∴F1(-c,0),F(xiàn)2(c,0),A,B,∵△ABF2是銳角三角形,∴∠AF2F1<45°,∴tan∠AF2F1<1,∴<1,整理得b2<2ac,∴a2-c2<2ac,兩邊同時除以a2,并整理,得e2+2e-1>0,解得e>-1或e<--1(舍去),∵0<e<1,∴橢圓的離心率e的取值范圍是(-1,1),故選B.]  求離心率的取值范圍,關(guān)鍵是尋找關(guān)于a,b,c的不等式,如本例T(2),利用等腰三角形是銳角三角形,則頂角的一半小于,建立不等式求解. [教師備選例題] 1.已知F1,F(xiàn)2分別是橢圓的左、右焦點,現(xiàn)以F2為圓心作一個圓恰好經(jīng)過橢圓中心并且交橢圓于點M

21、,N,若過F1的直線MF1是圓F2的切線,則橢圓的離心率為(  ) A.   B.2-   C.   D.-1 D [如圖所示. 由題意可得MF1⊥MF2,|MF2|=c,|MF1|=2a-c,|F1F2|=2c, 所以c2+(2a-c)2=4c2, 化為c2+2ac-2a2=0, 即e2+2e-2=0,e∈(0,1), 解得e=-1,故選D.] 2.已知橢圓E:+=1(a>b>0)的右焦點為F,短軸的一個端點為M,直線l:3x-4y=0交橢圓E于A,B兩點.若|AF|+|BF|=4,點M到直線l的距離不小于,則橢圓E的離心率的取值范圍是(  ) A. B. C. D.

22、 A [根據(jù)橢圓的對稱性及橢圓的定義可得A,B兩點到橢圓的左、右焦點的距離和為4a=2(|AF|+|BF|)=8,所以a=2.又d=≥,所以1≤b<2,所以e===.因為1≤b<2,所以0<e≤,故選A.]  與橢圓性質(zhì)有關(guān)的最值(范圍)問題  與橢圓有關(guān)的最值或范圍問題的求解方法 (1)利用數(shù)形結(jié)合、幾何意義,尤其是橢圓的性質(zhì),求最值或取值范圍. (2)利用函數(shù),尤其是二次函數(shù)求最值或取值范圍. (3)利用不等式,尤其是基本不等式求最值或取值范圍. (4)利用一元二次方程的判別式求最值或取值范圍. (1)(2017·全國卷Ⅰ)設(shè)A,B是橢圓C:+=1長軸的兩個端點.若C上存在

23、點M滿足∠AMB=120°,則m的取值范圍是(  ) A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,]∪[4,+∞) (2)(2019·開封模擬)如圖,焦點在x軸上的橢圓+=1的離心率e=,F(xiàn),A分別是橢圓的一個焦點和頂點,P是橢圓上任意一點,則·的最大值為________. (1)A (2)4 [(1)當(dāng)0<m<3時,焦點在x軸上,要使C上存在點M滿足∠AMB=120°, 則≥tan 60°=,即≥,解得0<m≤1. 當(dāng)m>3時,焦點在y軸上, 要使C上存在點M滿足∠AMB=120°, 則≥tan 60°=,即≥,解得

24、m≥9. 故m的取值范圍為(0,1]∪[9,+∞). (2)由題意知a=2,因為e==, 所以c=1,b2=a2-c2=3. 故橢圓方程為+=1. 設(shè)P點坐標(biāo)為(x0,y0). 所以-2≤x0≤2,-≤y0≤. 因為F(-1,0),A(2,0), =(-1-x0,-y0),=(2-x0,-y0), 所以·=x-x0-2+y=x-x0+1=(x0-2)2. 則當(dāng)x0=-2時,·取得最大值4.]  橢圓中長軸兩端點(或兩焦點)與短軸頂點所成的角最大,本例T(1)就是以此求解的.  1.(2017·全國卷Ⅲ)已知橢圓C:+=1(a>b>0)的左、右頂點分別為A1,A2,且以線

25、段A1A2為直徑的圓與直線bx-ay+2ab=0相切,則C的離心率為(  ) A.   B.   C.   D. A [由題意知以A1A2為直徑的圓的圓心為(0,0),半徑為a. 又直線bx-ay+2ab=0與圓相切, ∴圓心到直線的距離d==a,解得a=b, ∴=,∴e=====.故選A.] 2.已知點F1,F(xiàn)2分別是橢圓+=1的左、右焦點,點M是該橢圓上的一個動點,那么|+|的最小值是(  ) A.4 B.6 C.8 D.10 C [設(shè)M(x0,y0),F(xiàn)1(-3,0),F(xiàn)2(3,0).則=(-3-x0,-y0),=(3-x0,-y0),所以+=(-2x0,-2y0),|+|= ==. 因為點M在橢圓上,所以0≤y≤16, 所以當(dāng)y=16時,|+|取最小值為8.]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!