《2018屆高三數(shù)學(xué)一輪復(fù)習(xí): 第3章 第1節(jié) 任意角、弧度制及任意角的三角函數(shù)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018屆高三數(shù)學(xué)一輪復(fù)習(xí): 第3章 第1節(jié) 任意角、弧度制及任意角的三角函數(shù)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第三章 三角函數(shù)、解三角形
[深研高考·備考導(dǎo)航] 為教師授課、學(xué)生學(xué)習(xí)提供豐富備考資源
[五年考情]
考點(diǎn)
2016年
2015年
2014年
2013年
2012年
任意角和弧度制及任意角的三角函數(shù)
全國(guó)卷Ⅰ·T6
同角關(guān)系、誘導(dǎo)公式
全國(guó)卷Ⅰ·T2
全國(guó)卷Ⅰ·T8
全國(guó)卷Ⅱ·T15
三角函數(shù)的圖象和性質(zhì)
全國(guó)卷Ⅰ·T12
全國(guó)卷Ⅱ·T7
全國(guó)卷Ⅲ·T14
全國(guó)卷Ⅰ·T8
全國(guó)卷Ⅱ·T10
全國(guó)卷Ⅰ·T6
全國(guó)卷Ⅱ·T12
全國(guó)卷Ⅰ·T15
全國(guó)卷·T9
正弦型函數(shù)及應(yīng)用
簡(jiǎn)單的三角恒等變
2、換
全國(guó)卷Ⅱ·T9
全國(guó)卷Ⅲ·T5
全國(guó)卷Ⅰ·T2
全國(guó)卷Ⅱ·T14
全國(guó)卷Ⅰ·T15
全國(guó)卷Ⅱ·T15
正弦定理和余弦定理
全國(guó)卷Ⅰ·T17
全國(guó)卷Ⅱ·T13
全國(guó)卷Ⅲ·T8
全國(guó)卷Ⅰ·T16
全國(guó)卷Ⅱ·T17
全國(guó)卷Ⅰ·T16
全國(guó)卷Ⅱ·T4
全國(guó)卷Ⅰ·T17
全國(guó)卷Ⅱ·T17
全國(guó)卷·T17
[重點(diǎn)關(guān)注]
1.三角函數(shù)、解三角形是全國(guó)卷高考命題的重點(diǎn),分值為15分或17分,一般是三道客觀題或一道客觀題、一道解答題,以中檔題為主.
2.主要考查三角函數(shù)的圖象與性質(zhì),簡(jiǎn)單的三角恒等變換,正、余弦定理及其應(yīng)用,且題目??汲P拢?
3.客觀題主要涉
3、及三角函數(shù)的求值,函數(shù)的圖象及性質(zhì),解答題主要以三角變換為工具,綜合考查函數(shù)的圖象與性質(zhì);或以正、余弦定理為工具,結(jié)合三角變換考查解三角形的有關(guān)知識(shí).
4.高考命題中,三角函數(shù)常與解三角形相結(jié)合,既可以考查三角恒等變換,又可以考查正、余弦定理的綜合應(yīng)用,符合高考命題“要在知識(shí)點(diǎn)的交匯處命題”的要求.
[導(dǎo)學(xué)心語(yǔ)]
1.立足基礎(chǔ),著眼于提高:立足課本,牢固掌握三角函數(shù)的概念、圖象和性質(zhì);弄清每個(gè)公式成立的條件,公式間的內(nèi)在聯(lián)系及公式的變形、逆用等.要在靈、活、巧上下功夫,切不可死記硬背.
2.突出數(shù)學(xué)思想方法:應(yīng)深刻理解數(shù)與形的內(nèi)在聯(lián)系,理解眾多三角公式的應(yīng)用無(wú)一不體現(xiàn)等價(jià)轉(zhuǎn)化思想.在解
4、決三角函數(shù)的問(wèn)題時(shí)仔細(xì)體會(huì)拆角、切化弦、三角函數(shù)歸一的方法技能.
3.抓住關(guān)鍵:三角函數(shù)的化簡(jiǎn)、求值中,要熟練掌握三角變換公式的應(yīng)用,其中角的變換是解題的關(guān)鍵,注意已知與待求中角的關(guān)系,力爭(zhēng)整體處理.
4.注意交匯:三角函數(shù)與解三角形知識(shí)的交匯滲透,這也是高考命題的熱點(diǎn)之一.
第一節(jié) 任意角、弧度制及任意角的三角函數(shù)
[考綱傳真] 1.了解任意角的概念和弧度制的概念.2.能進(jìn)行弧度與角度的互化.3.理解任意角三角函數(shù)(正弦、余弦、正切)的定義.
1.角的概念的推廣
(1)定義:角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形.
(2)分類
(3)終
5、邊相同的角:所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定義和公式
(1)定義:把長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度的角,弧度記作rad.
(2)公式:①角度與弧度的換算:
a.1°= rad;b.1 rad=°.
②弧長(zhǎng)公式:l=r|α|.
③扇形面積公式:S=lr=r2α.
3.任意角的三角函數(shù)
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”)
(1)小于90°的角是銳角.( )
(2)銳角是第一象限角,反之亦然.( )
(3)角α的三角函數(shù)值與終邊上點(diǎn)
6、P的位置無(wú)關(guān).( )
(4)若α為第一象限角,則sin α+cos α>1.( )
[答案] (1)× (2)× (3)√ (4)√
2.(2017·西寧復(fù)習(xí)檢測(cè)(一))若cos θ>0,且sin 2θ<0,則角θ的終邊所在象限為( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
D [由cos θ>0,sin 2θ=2sin θ cos θ<0得sin θ<0,則角θ的終邊在第四象限,故選D.]
3.(教材改編)已知角α的終邊與單位圓的交點(diǎn)為M,則sin α=( )
A. B.±
C. D.±
B [由題意知|r|2=2+y2=1,
7、所以y=±.由三角函數(shù)定義知sin α=y(tǒng)=±.]
4.在單位圓中,200°的圓心角所對(duì)的弧長(zhǎng)為( )
A.10π B.9π
C.π D.π
D [單位圓的半徑r=1,200°的弧度數(shù)是200×=π,由弧度數(shù)的定義得π=,所以l=π.]
5.已知半徑為120 mm的圓上,有一條弧長(zhǎng)是144 mm,則該弧所對(duì)的圓心角的弧度數(shù)為________rad.
1.2 [由題意知α===1.2 rad.]
角的有關(guān)概念及其集合表示
(1)若角α是第二象限角,則是( )
A.第一象限角 B.第二象限角
C.第一或第三象限角 D.第二或第四象限角
(2)已知
8、角α的終邊在如圖3-1-1所示陰影部分表示的范圍內(nèi)(不包括邊界),則角α用集合可表示為________.
圖3-1-1
(1)C (2)(k∈Z) [(1)∵α是第二象限角,
∴+2kπ<α<π+2kπ,k∈Z,
∴+kπ<<+kπ,k∈Z.
當(dāng)k為偶數(shù)時(shí),是第一象限角;
當(dāng)k為奇數(shù)時(shí),是第三象限角.
綜上,是第一或第三象限角.
(2)在[0,2π)內(nèi),終邊落在陰影部分角的集合為,
∴所求角的集合為(k∈Z).]
[規(guī)律方法] 1.與角α終邊相同的角可以表示為β=2kπ+α(k∈Z)的形式,α是任意角;相等的角終邊一定相同,終邊相同的角不一定相等;角度制與弧度制不能混用
9、.
2.由α所在象限,判定所在象限,應(yīng)先確定的范圍,并對(duì)整數(shù)k的奇、偶情況進(jìn)行討論.
[變式訓(xùn)練1] (1)設(shè)集合M=,N=,那么( )
A.M=N B.M?N
C.N?M D.M∩N=?
(2)已知角α=45°,在區(qū)間[-720°,0°]內(nèi)與角α有相同終邊的角β=________.
【導(dǎo)學(xué)號(hào):01772101】
(1)B (2)-675°或-315° [(1)法一:由于M=={…,-45°,45°,135°,225°,…},
N=={…,-45°,0°,45°,90°,135°,180°,225°,…},顯然有M?N,故選B.
法二:由于M中,x=·180°+45°
10、=k·90°+45°=(2k+1)·45°,2k+1是奇數(shù);
而N中,x=·180°+45°=k·45°+45°=(k+1)·45°,k+1是整數(shù),因此必有M?N,故選B.
(2)由終邊相同的角的關(guān)系知β=k·360°+45°,k∈Z,
∴取k=-2,-1,得β=-675°或β=-315°.]
扇形的弧長(zhǎng)、面積公式
(1)已知扇形周長(zhǎng)為10,面積是4,求扇形的圓心角;
(2)已知扇形周長(zhǎng)為40,當(dāng)它的半徑和圓心角分別取何值時(shí),扇形的面積最大?
[解] (1)設(shè)圓心角是θ,半徑是r,則
解得(舍去)或
∴扇形的圓心角為.5分
(2)設(shè)圓心角是θ,半徑是r,則2r
11、+rθ=40.7分
又S=θr2=r(40-2r)=r(20-r)=-(r-10)2+100≤100.9分
當(dāng)且僅當(dāng)r=10時(shí),Smax=100,此時(shí)2×10+10θ=40,θ=2,∴當(dāng)r=10,θ=2時(shí),扇形的面積最大.12分
[規(guī)律方法] 1.(1)在弧度制下,計(jì)算扇形面積和弧長(zhǎng)比在角度制下更方便、簡(jiǎn)捷;(2)從扇形面積出發(fā),在弧度制下把問(wèn)題轉(zhuǎn)化為關(guān)于R的二次函數(shù)的最值問(wèn)題(如本例)或不等式問(wèn)題來(lái)求解.
2.利用公式:(1)l=αR;(2)S=lR;(3)S=αR2.其中R是扇形的半徑,l是弧長(zhǎng),α(0<α<2π)為圓心角,S是扇形面積,知道兩個(gè)量,可求其余量.
[變式訓(xùn)練2]
12、已知半徑為10的圓O中,弦AB的長(zhǎng)為10,
(1)求弦AB所對(duì)的圓心角α的大小;
(2)求α所在的扇形弧長(zhǎng)l及弧所在的弓形的面積S.
[解] (1)在△AOB中,AB=OA=OB=10,∴△AOB為等邊三角形,因此弦AB所對(duì)的圓心角α=.5分
(2)由扇形的弧長(zhǎng)與扇形面積公式,得
l=α·R=×10=,
S扇形=R·l=α·R2=.9分
又S△AOB=·OA·OB·sin=25,
∴S弓形=S扇形-S△AOB=50.12分
三角函數(shù)的定義
(1)(2014·全國(guó)卷Ⅰ)若tan α>0,則( )
A.sin α>0 B.cos α>0
C.sin 2α>0 D
13、.cos 2α>0
(2)(2016·河南中原名校第三次聯(lián)考)已知角α的終邊經(jīng)過(guò)點(diǎn)A(-,a),若點(diǎn)A在拋物線y=-x2的準(zhǔn)線上,則sin α=( )
A.- B.
C.- D.
(1)C (2)D [(1)由tan α>0知角α是第一或第三象限角,當(dāng)α是第一象限角時(shí),sin 2α=2sin αcos α>0;當(dāng)α是第三象限角時(shí),sin α<0,cos α<0,仍有sin 2α=2sin αcos α>0,故選C.
(2)拋物線方程y=-x2可化為x2=-4y,
∴拋物線的準(zhǔn)線方程為y=1.
∵點(diǎn)A在拋物線y=-x2的準(zhǔn)線上,
∴A(-,1),由三角函數(shù)的定義得sin
14、 α===.]
[規(guī)律方法] 1.用定義法求三角函數(shù)值的兩種情況.
(1)已知角α終邊上一點(diǎn)P的坐標(biāo),則可先求出點(diǎn)P到原點(diǎn)的距離r,然后用三角函數(shù)的定義求解;
(2)已知角α的終邊所在的直線方程,則可先設(shè)出終邊上一點(diǎn)的坐標(biāo),求出此點(diǎn)到原點(diǎn)的距離,然后用三角函數(shù)的定義來(lái)求相關(guān)問(wèn)題.
2.確定三角函數(shù)值的符號(hào),可以從確定角的終邊所在象限入手進(jìn)行判斷.
[變式訓(xùn)練3] (1)(2016·山東聊城期中)設(shè)α是第二象限角,P(x,4)為其終邊上的一點(diǎn),且cos α=x,則tan 2α=( )
A. B.-
C. D.-
(2)函數(shù)y=的定義域?yàn)開_______.
(1)A (2)
15、(k∈Z) [(1)由三角函數(shù)的定義可得cos α=.
∵cos α=x,∴=x,
又α是第二象限角,∴x<0,故可解得x=-3,
∴cos α=-,sin α==,
∴tan α==-,∴tan 2α==.故選A.
(2)∵2cos x-1≥0,
∴cos x≥.
由三角函數(shù)線畫出x滿足條件的終邊范圍(如圖陰影所示).
∴x∈(k∈Z).]
[思想與方法]
1.在利用三角函數(shù)定義時(shí),點(diǎn)P(x,y)可取終邊上任意一點(diǎn),若點(diǎn)P在單位圓上,則sin α=y(tǒng),cos α=x,tan α=;若|OP|=r,則sin α=,cos α=,tan α=.
2.三角函數(shù)值在各象限的符號(hào)規(guī)律:一全正、二正弦、三正切、四余弦.
3.利用單位圓和三角函數(shù)線是解三角不等式的常用方法.
[易錯(cuò)與防范]
1.第一象限角、銳角、小于90°的角是三個(gè)不同的概念,前者是象限角,后兩者是區(qū)間角.
2.角度制與弧度制可利用180°=π rad進(jìn)行互化,在同一個(gè)式子中,采用的度量制必須一致,不可混用.
3.已知三角函數(shù)值的符號(hào)確定角的終邊位置不要遺漏終邊在坐標(biāo)軸上的情況.