《高考數(shù)學(xué)二輪復(fù)習(xí) 專題2 三角函數(shù)、三角變換、解三角形、平面向量 第二講 三角變換與解三角形課件 文》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 專題2 三角函數(shù)、三角變換、解三角形、平面向量 第二講 三角變換與解三角形課件 文(22頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、隨堂講義隨堂講義專題二三角函數(shù)、三角變換、解三角形、專題二三角函數(shù)、三角變換、解三角形、平面向量平面向量第二講三角變換與解三角形第二講三角變換與解三角形 欄目鏈接欄目鏈接高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破誤區(qū)警示:誤區(qū)警示:本題易出現(xiàn)本題易出現(xiàn)2k(kZ)的錯(cuò)誤)的錯(cuò)誤,原因原因是沒注意到是沒注意到2的范圍的范圍.(1)已知某些相關(guān)條件)已知某些相關(guān)條件,求角的解題步驟:求角的解題步驟: 求出該角的范求出該角的范圍;圍;結(jié)合該角的范圍求出該角的三角函數(shù)值結(jié)合該角的范圍求出該角的三角函數(shù)值.(2)根據(jù)角的函數(shù)值求角時(shí))根據(jù)角的函數(shù)值求
2、角時(shí),選取的函數(shù)在這個(gè)范圍內(nèi)應(yīng)是單選取的函數(shù)在這個(gè)范圍內(nèi)應(yīng)是單調(diào)的調(diào)的.高考熱高考熱點(diǎn)突破點(diǎn)突破主干考主干考點(diǎn)梳理點(diǎn)梳理高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破(1)在三角形中考查三角函數(shù)式的變換)在三角形中考查三角函數(shù)式的變換, 是近幾年高考的熱是近幾年高考的熱點(diǎn)點(diǎn).這種題是在新的載體上進(jìn)行的三角變換這種題是在新的載體上進(jìn)行的三角變換,因此要時(shí)刻注意它,因此要時(shí)刻注意它的兩重性:其一,作為三角形問題,它必然要用到三角形的內(nèi)的兩重性:其一,作為三角形問題,它必然要用到三角形的內(nèi)角和定理,正、余弦定理及有關(guān)三角形的性質(zhì),應(yīng)及時(shí)進(jìn)行邊角和定理
3、,正、余弦定理及有關(guān)三角形的性質(zhì),應(yīng)及時(shí)進(jìn)行邊角轉(zhuǎn)化,有利于發(fā)現(xiàn)解決問題的思路;其二,它畢竟是三角變角轉(zhuǎn)化,有利于發(fā)現(xiàn)解決問題的思路;其二,它畢竟是三角變換,只是角的范圍受到了限制,因此常見的三角變換方法和原換,只是角的范圍受到了限制,因此常見的三角變換方法和原則都是適用的,注意則都是適用的,注意“三統(tǒng)一三統(tǒng)一”,即,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)一結(jié)構(gòu)”,這是使問題獲得解決的,這是使問題獲得解決的突破口突破口.高考熱高考熱點(diǎn)突破點(diǎn)突破(2)在解三角形時(shí))在解三角形時(shí),三角形內(nèi)角的正弦值一定為正三角形內(nèi)角的正弦值一定為正,但該但該角不一定是銳角角不一定是銳角,也可能為鈍角(
4、或直角)也可能為鈍角(或直角),這往往造成有這往往造成有兩解兩解,應(yīng)注意分類討論應(yīng)注意分類討論,但三角形內(nèi)角的余弦值為正但三角形內(nèi)角的余弦值為正,該角,該角一定為銳角,且有唯一解,因此,在解三角形中,若有求角一定為銳角,且有唯一解,因此,在解三角形中,若有求角問題,應(yīng)盡量求角的余弦值問題,應(yīng)盡量求角的余弦值.高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破如圖所示,如圖所示,A,B是海面上位于東西方向相距是海面上位于東西方向相距5(3)海里的)海里的兩個(gè)觀測點(diǎn),現(xiàn)位于點(diǎn)兩個(gè)觀測點(diǎn),現(xiàn)位于點(diǎn)A北偏東北偏東45,點(diǎn),點(diǎn)B北偏西北偏西60的點(diǎn)的點(diǎn)D有一艘輪船發(fā)出求救信號,位于
5、點(diǎn)有一艘輪船發(fā)出求救信號,位于點(diǎn)B南偏西南偏西60且與點(diǎn)且與點(diǎn)B相距相距20海里的點(diǎn)海里的點(diǎn)C的救援船立即前往營救,其航行速度為的救援船立即前往營救,其航行速度為30海里海里/時(shí),時(shí),該救援船到達(dá)點(diǎn)該救援船到達(dá)點(diǎn)D需要多長時(shí)間?需要多長時(shí)間?思路點(diǎn)撥:思路點(diǎn)撥:由題設(shè)條件由題設(shè)條件,先在先在ABD中求中求BD,再在再在BDC中中求求CD,進(jìn)而求出時(shí)間進(jìn)而求出時(shí)間.高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破應(yīng)用解三角形知識解決實(shí)際問題需要進(jìn)行下列四步:應(yīng)用解三角形知識解決實(shí)際問題需要進(jìn)行下列四步:(1)分析題意)分析題意,準(zhǔn)確理解題意準(zhǔn)確理解題意,分清已知與所求分清
6、已知與所求,尤其要理尤其要理解題中的有關(guān)名詞、術(shù)語解題中的有關(guān)名詞、術(shù)語,如坡度、仰角、俯角、視角、方如坡度、仰角、俯角、視角、方位角等;位角等;(2)根據(jù)題意畫出示意圖)根據(jù)題意畫出示意圖,并將已知條件在圖形中標(biāo)出;并將已知條件在圖形中標(biāo)出;(3)將所求問題歸結(jié)到一個(gè)或幾個(gè)三角形中)將所求問題歸結(jié)到一個(gè)或幾個(gè)三角形中,通過合理運(yùn)用通過合理運(yùn)用正、余弦定理等有關(guān)知識正確求解;正、余弦定理等有關(guān)知識正確求解;(4)檢驗(yàn)解出的結(jié)果是否具有實(shí)際意義)檢驗(yàn)解出的結(jié)果是否具有實(shí)際意義,對結(jié)果進(jìn)行取舍對結(jié)果進(jìn)行取舍,得出正確答案得出正確答案.高考熱高考熱點(diǎn)突破點(diǎn)突破高考熱高考熱點(diǎn)突破點(diǎn)突破1.三角恒等變換
7、常用的方法有湊角變換、弦切互化、升冪降冪、三角恒等變換常用的方法有湊角變換、弦切互化、升冪降冪、“1”的代換等的代換等.2.要切實(shí)掌握公式之間的內(nèi)在聯(lián)系,把握各公式的結(jié)構(gòu)特征,要切實(shí)掌握公式之間的內(nèi)在聯(lián)系,把握各公式的結(jié)構(gòu)特征,明確各公式的適用范圍,能根據(jù)具體問題合理選用三角公式,明確各公式的適用范圍,能根據(jù)具體問題合理選用三角公式,并注意公式的逆用和變形并注意公式的逆用和變形.3.會利用方程的思想解決形如會利用方程的思想解決形如sin cos 、sin cos 的求值的求值問題,一般情況下,已知問題,一般情況下,已知sin cos 的值,求的值,求sin cos 的值的值時(shí),可用平方法,但由
8、時(shí),可用平方法,但由sin cos 的值求的值求sin cos 的值時(shí),的值時(shí),要先討論要先討論sin cos 的符號的符號.高考熱高考熱點(diǎn)突破點(diǎn)突破4.求解三角條件等式下的三角變換問題,常用如下方法:求解三角條件等式下的三角變換問題,常用如下方法:(1)直接法:將已知條件直接恒等變形推出結(jié)論)直接法:將已知條件直接恒等變形推出結(jié)論.(2)代入法:將已知條件代入待求式(或待證式的一邊)代入法:將已知條件代入待求式(或待證式的一邊)進(jìn)行恒等變形求解進(jìn)行恒等變形求解.(3)消元法:如果所求式中不含已知條件式中的某一個(gè)參)消元法:如果所求式中不含已知條件式中的某一個(gè)參數(shù),可消去該參數(shù)進(jìn)行恒等變形求解數(shù),可消去該參數(shù)進(jìn)行恒等變形求解.5.求解三角形中的三角函數(shù)問題,要注意三角形內(nèi)角和定理求解三角形中的三角函數(shù)問題,要注意三角形內(nèi)角和定理的應(yīng)用的應(yīng)用.6.要注意正弦定理和余弦定理的邊角互換功能要注意正弦定理和余弦定理的邊角互換功能.